Environmental Biology of Fishes

, Volume 29, Issue 1, pp 35–42 | Cite as

Zooplankton capture by a coral reef fish: an adaptive response to evasive prey

  • David J. Coughlin
  • J. Rudi Strickler
Full paper


High-speed cinematography and video using modified Schlieren optics and laser illumination helped elicit details of prey capture mechanisms used by Chromis viridis while feeding on calanoid copepods and Artemia. Chromis viridis is capable of a ram-jaw, low-suction feeding, as well as a typical suction feeding behavior described for other species of planktivores. By adjusting the degree of jaw protrusion and amount of suction used during a feeding strike, this fish can modulate its feeding strikes according to the prey type being encountered. The ram-jaw feeding mode enables C. viridis to capture highly evasive calanoid copepods within 6 to 10 msec. The use of specialized feeding behavior for evasive prey and the ability to vary feeding behavior are adaptations for feeding on evasive prey.

Key words

Pomacentridae Chromis viridis Zooplanktivore Water column forager Suction feeding Ram-jaw feeding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Andrews, J.C. & P. Gentien. 1982. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: a solution to Darwin's question? Mar. Ecol. Prog. Ser. 8: 257–269.Google Scholar
  2. Collette, B.B. & F.H. Talbot. 1972. Activity patterns of coral reef fishes with emphasis on nocturnal-diurnal changeover. pp. 98–124. In: B.B. Collette & S.A. Earle (ed.) Results of the Tektite Program: Ecology of Coral Reef Fishes, Los Angeles Co. Mus. Sci. Bull. 14.Google Scholar
  3. Confer, J.L. & P.I. Blades. 1975. Omnivorous zooplankton and planktivorous fish. Limnol. Oceanogr. 20: 571–579.Google Scholar
  4. Davis, W.P. & R.S. Birdsong. 1973. Coral reef fishes which forage in the water column. Helgoländer wiss. Meeresunters. 24: 292–306.Google Scholar
  5. Drenner, R.F., J.R. Strickler & W.J. O'Brien. 1978. Capture probability: the role of zooplankter escape in the selective feeding of planktivorous fish. J. Fish. Res. Board Can. 35: 1370–1373.Google Scholar
  6. Emery, A.R. 1973. Comparative ecology and functional osteology of 14 species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull mar. Sci. 23: 649–770.Google Scholar
  7. Grobecker, D.B. & T.W. Pietsch. 1979. High-speed cinematographic evidence for ultrafast feeding in Antennariid anglerfishes. Science 205: 1161–1162.Google Scholar
  8. Hamner, W.M., M.S. Jones, J.H. Carleton, I.R. Hauri & D.McB. Williams. 1988. Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull. mar. Sci. 42: 459–479.Google Scholar
  9. Hiatt, R.W. & D.W. Strasburg. 1960. Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol. Monogr. 30: 65–127.Google Scholar
  10. Hobson, E.S. 1974. Feeding relationships of the teleostean fishes on coral reefs in Kona, Hawaii. U.S. Fish. Bull. 72: 915–1031.Google Scholar
  11. Hobson, E.S. & J.R. Chess. 1976. Trophic interactions among fishes and zooplankters near shore at Santa Catalina Island, California. U.S. Fish. Bull. 74: 567#x2013;598.Google Scholar
  12. Janssen, J. 1976. Selectivity of an artificial filter feeder and suction feeders on calanoid copepods. Amer. Midl. Nat. 95: 491#x2013;493.Google Scholar
  13. Janssen, J. 1978. Feeding behavior repertoire of the alewife, Alosa pseudoharengus, and the ciscoes Coregonus hovi and C. artedii. J. Fish. Res. Board Can. 35: 249#x2013;253.Google Scholar
  14. Kerfoot, W.C., D.L. Kellogg, Jr. & J.R. Strickler. 1980. Visual observations of live zooplankters: evasion, escape, and chemical defenses. pp. 10#x2013;27. In: W.C. Kerfoot (ed.) Evolution and Ecology of Zooplankton Communities, University of New England Press, Hanover.Google Scholar
  15. Kettle, D. & W.J. O'Brien. 1978. Vulnerability of arctic zooplankton species to predation by small lake trout (Salvelinus namaycush). J. Fish. Res. Board Can. 35: 1495–1500.Google Scholar
  16. Lauder, G.V. 1980, The suction feeding mechanism in sunfishes (Lepomis): an experimental analysis. J. exp. Biol. 88: 49–72.Google Scholar
  17. Lauder, G.V. 1986. Aquatic prey capture in fishes: experimental and theoretical approaches. J. exp. Biol. 125: 411–416.Google Scholar
  18. Liem, K.F. 1979. Modulatory multiplicity in the feeding mechanism in cichlid fishes, as exemplified by the invertebrate pickers of Lake Tanganyika. J. Linn. Soc. (Zool) 189: 93–125.Google Scholar
  19. Liem, K.F. 1980. Adaptive significance of intra- and interspecific differences in the feeding repertoires of cichlid fishes. Amer. Zool. 20: 295–314.Google Scholar
  20. McComas, S.R. & R.W. Drenner. 1982. Species replacement in a reservoir fish community: silverside feeding mechanics and competition. Can. J. Fish. aquat. Sci. 39: 815–821.Google Scholar
  21. Motta, P.J. 1982. Functional morphology of the head of the inertial suction feeding butterflyfish, Chaetodon miliaris (Perciformes, Chaetodontidae). J. Morph. 174: 283–312.Google Scholar
  22. Motta, P.J. 1984. Mechanics and functions of jaw protrusion in teleost fishes: a review. Copeia 1984: 1–18.Google Scholar
  23. Motta P.J. 1988. Functional morphology of the feeding apparatus of ten species of Pacific butterflyfishes (Perciformes, Chaetodontidae): an ecomorphological approach. Env. Biol. Fish. 22: 39–67.Google Scholar
  24. O'Brien, W.J. 1987. Planktivory by freshwater fish: thrust and parry in the pelagia. pp. 1–16 In: W.C. Kerfoot & A. Sih (ed.) Predation, Direct and Indirect Impacts on Aquatic Communities University Press of New England, Hanover.Google Scholar
  25. Osse, J.W.M. 1985. Jaw protrusion, an optimization of the feeding apparatus of teleosts? Acta Bioth. 34: 219–232.Google Scholar
  26. Ralston, S. 1981. Aspects of the reproductive biology and feeding ecology of Chaetodon miliaris, a Hawaiian endemic butterflyfish. Env. Biol. Fish. 6: 167–176.Google Scholar
  27. Randall, J.E., M.-L. Bauchot & M. Desoutter. 1985. Chromis viridis (Cuvier, 1830) the correct name for the Indo-Pacific damselfish previously known as C. caerulea (Cuvier, 1830) (Pisces, Pomacentridae). Cybium 9: 411–413.Google Scholar
  28. Strickler, J.R. 1975. Swimming of planktonic Cyclops species (Copepoda, Crustacea): pattern, movements and their control. pp. 599–613. In: T.Y. -T. Wu, C.J. Brokaw & C. Brennan (ed.) Swimming and Flying in Nature, Volume 2, Plenum Press, New York.Google Scholar
  29. Strickler, J.R. 1985. Feeding currents in calanoid copepods: two new hypotheses. Symp. Soc. exp. Biol. 39: 459–485.Google Scholar
  30. Strickler, J.R. & A.K. Bal. 1973. Setae of the first antennae of the copepod Cyclops scutifer (Sars): their structure and importance. Proc. Natn. Acad. Sci. U.S.A. 70: 2656–2659.Google Scholar
  31. Swerdloff, S.N. 1970. Behavioral observations on Eniwetok damselfishes (Pomacentridae: Chromis) with special reference to the spawning of Chromis caeruleus. Copeia 1970: 371–374.Google Scholar
  32. Vinyard, G.L. 1980. Differential prey vulnerability and predator selectivity: effects of evasive prey on blue gill (Lepomis macrochirus) and pumpkinseed (L. gibbosus) predation. Can. J. Fish. aquat. Sci. 37: 2294–2299.Google Scholar
  33. Vinyard, G.L. 1982. Variable kinematics of Sacramento perch (Archoplites interruptus) capturing evasive and nonevasive prey. Can. J. Fish. aquat. Sci. 39: 208–211.Google Scholar
  34. Williams, D.McB. & A.I. Hatcher. 1983. Structure of fish communities on outer slopes of inshore, mid-shelf and outer shelf reefs of the Great Barrier Reef. Mar. Ecol. Prog. Ser. 10: 239–250.Google Scholar
  35. Wolanski, E. & W.M. Hamner. 1988. Topographically controlled fronts in the ocean and their biological influence. Science 241: 177–181.Google Scholar
  36. Wright, D.I. & W.J. O'Brien. 1984. The development and field test of a tactical model of the planktivorous feeding of white crappie (Poxomis annularis). Ecol. Monogr. 54: 65–98.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • David J. Coughlin
    • 1
  • J. Rudi Strickler
    • 1
  1. 1.Biological Science CenterBoston University Marine ProgramBostonU.S.A.

Personalised recommendations