Skip to main content
Log in

Petersen and removal population size estimates: combining methods to adjust and interpret results when assumptions are violated

  • Full paper
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

We present ways to test the assumptions of the Petersen and removal methods of population size estimation and ways to adjust the estimates if violations of the assumptions are found. We were motivated by the facts that (1) results of using both methods are commonly reported without any reference to the testing of assumptions, (2) violations of the assumptions are more likely to occur than not to occur in natural populations, and (3) the estimates can be grossly in error if assumptions are violated. We recognize that in many cases two days in the field is the most time fish biologists can spend in obtaining a population estimate, so the use of alternative models of population estimation that require fewer assumptions is precluded. Hence, for biologists operating with these constraints and only these biologists, we describe and recommend a two-day technique that combines aspects of both capture-recapture and removal methods. We indicate how to test: most of the assumptions of both methods and how to adjust the population estimates obtained if violations of the assumptions occur. We also illustrate the use of this combined method with data from a field study. The results of this application further emphasize the importance of testing the assumptions of whatever method is used and making appropriate adjustments to the population size estimates for any violations identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Alexander, G.R. & E.A. Hansen. 1983. Sand sediment in a Michigan trout stream. Part II. Effects of reducing sand.bedload on a trout population. N. Amer. J. Fish. Manag. 3: 365–372.

    Article  Google Scholar 

  • Bailey, N.T.J. 1951. On estimating the size of mobile populations from recapture data. Biometrika 38: 293–306.

    Article  Google Scholar 

  • Bailey, N.T.J. 1952. Improvements in the interpretation of recapture data. J. Anim. Ecol. 21: 120–127.

    Article  Google Scholar 

  • Begon, M. 1979. Investigating animal abundance: capture-recapture for biologists. University Park Press, Baltimore. 97 pp.

    Google Scholar 

  • Bell, G. 1974. Population estimates from recapture studies in which no recaptures have been made. Nature (London) 248: 616.

    Article  CAS  Google Scholar 

  • Bishop, J.A. & D.J. Hartley. 1976. The size and age structure of rural populations of Rattus norvegicus containing individuals resistant to the anti-coagulant poison warfarin. J. Anim. Ecol. 45: 623–646.

    Article  Google Scholar 

  • Blower, J.G., L.M. Cook & J.A. Bishop. 1981. Estimating the size of animal populations. George Allen and Unwin Limited, London. 128 pp.

    Google Scholar 

  • Boguslavsky, G.W. 1956. Statistical estimation of the size of a small population. Science 124: 317–318.

    CAS  Google Scholar 

  • Bohlin, T. & B. Sundström. 1977. Influence of unequal catchability on population estimates using the Lincoln index and the removal method applied to electrofishing. Oikos 28: 123–129.

    Google Scholar 

  • Brownie, C. & D.S. Robson. 1983. Estimation of time-specific survival rates from tag-resighting samples: a generalization of the Jolly-Seber model. Biometrics 39: 437–453.

    Article  Google Scholar 

  • Buckland, S.T. 1980. A modified analysis of the Jolly-Seber capture-recapture model. Biometrics 36: 419–435.

    Article  Google Scholar 

  • Carle, F.L. & M.R. Strub. 1978. A new method for estimating population size from removal data. Biometrics 34: 621–630.

    Article  Google Scholar 

  • Caughley, G. 1977. Analysis of vertebrate populations. John Wiley, New York. 234 pp.

    Google Scholar 

  • Chapman, D.G. 1951. Some properties of the hypergeometric distribution with applications to zoological sample censuses. Univ. Calif. Publ. Statistics 1: 131–160.

    Google Scholar 

  • Chapman, D.W. & E. Knudsen. 1980. Channelization and livestock impacts on salmonid habitat and biomass in western Washington. Trans. Amer. Fish. Soc. 109: 357–363.

    Article  Google Scholar 

  • Cooper, G.P. & K.F. Lagler. 1956. The measurement of fish population size. Trans. North Amer. Wildl. Conf. 21: 281–297.

    Google Scholar 

  • Cormack, R.M. 1966. A test for equal catchability. Biometrics 22: 330–342.

    Article  CAS  Google Scholar 

  • Crisp, D.T., R.H.K. Mann & J.C. McCormack. 1974. The populations of fish at Cow Green, upper Teesdale, before impoundment. J. Appl. Ecol. 11: 969–996.

    Article  Google Scholar 

  • Crisp, D.T, R.H.K. Mann & J.C. McCormack. 1975. The populations of fish in the River Tees system on the Moor House National Nature Reserve, Westmorland. J. Fish Biol. 7: 573–593.

    Article  Google Scholar 

  • DeLury, D.B. 1947. On the estimation of biological populations. Biometrics 3: 145–167.

    Article  CAS  Google Scholar 

  • Eberhardt, L.L. 1978. Appraising variability in population studies. J. Wildl. Manag. 42: 207–238.

    Google Scholar 

  • Egglishaw, H.J. 1970. Production of salmon and trout in a stream in Scotland. J. Fish Biol. 2: 117–136.

    Article  Google Scholar 

  • Egglishaw, H.J. & P.E. Shackley. 1977. Growth, survival and production of juvenile salmon and trout in a Scottish stream. 1966–1975. J. Fish Biol. 11: 647–672.

    Article  Google Scholar 

  • Fraser, J.M. 1978. The effect of competition with yellow perch on the survival and growth of planted brook trout, splake, and rainbow trout in a small Ontario lake. Trans. Amer. Fish. Soc. 107: 505–517.

    Article  Google Scholar 

  • Gaskell, T.J. & B.J. George. 1972. A Baysian modification of the Lincoln index. J. Appl. Ecol. 9: 377–384.

    Article  Google Scholar 

  • Goldspink, C.R. 1979. The population density, growth rate and production of roach Rutilus rutilus (L) in Tjeukemeer, The Netherlands. J. Fish Biol. 15: 473–498.

    Article  Google Scholar 

  • Hartzler, J.R. 1983. The effects of half-log covers on angler harvest and standing crop of brown trout in McMichaels Creek, Pennsylvania. N. Amer. J. Fish. Manag. 3: 228–235.

    Article  Google Scholar 

  • Hauber, A.B. 1983. Two methods for evaluating fingerling walleye stocking success and natural year-class densities in Seven Island Lake, Wisconsin, 1977–1981. N. Amer. J. Fish. Manag. 3: 152–155.

    Article  Google Scholar 

  • Hayne, D.W. 1949. Two methods for estimating population from trapping records. J. Mammal. 30: 399–411.

    CAS  Google Scholar 

  • Hoopes, R.L. 1975. Flooding as the result of hurricane Agnes, and its effect on a native brook trout population in an infertile headwater stream in central Pennsylvania. Trans. Amer. Fish. Soc. 104: 96–99.

    Article  Google Scholar 

  • Howells, E.J., M.E. Howells & J.S. Alabaster. 1983. A field investigation of water quality, fish and invertebrates in the Mawddach river system, Wales. J. Fish Biol. 22: 447–469.

    Article  CAS  Google Scholar 

  • Hunt, R.L. 1976. A long-term evaluation of trout habitat development and its relation to improving management-related research. Trans. Amer. Fish. Soc. 105: 361–364.

    Article  Google Scholar 

  • Jacobs, K.E. & W.D. Swink. 1982. Estimations of fish population size and sampling efficiency of electrofishing and rotenone in two Kentucky tailwaters. N. Amer. J. Fish. Manag. 2: 239–248.

    Article  Google Scholar 

  • Jensen, A.L. 1981. Sample sizes for single mark and single recapture experiments. Trans. Amer. Fish. Soc. 110: 455–458.

    Article  Google Scholar 

  • Keller, C.R. & K.P. Burnham. 1982. Riparian fencing, grazing, and trout habitat preference on Summit Creek, Idaho. N. Amer. J. Fish. Manag. 2: 53–59.

    Article  Google Scholar 

  • Leslie, P.H. 1958. Statistical appendix. J. Anim. Ecol. 27: 84–86.

    Google Scholar 

  • Leslie, P.H. & D.H.S. Davis. 1939. An attempt to determine the absolute number of rats on a given area. J. Anim. Ecol. 8: 94–113.

    Article  Google Scholar 

  • Mahon, R. 1980. Accuracy of catch-effort methods for estimating fish density and biomass in streams. Env. Biol. Fish. 5: 343–360.

    Article  Google Scholar 

  • Mann, R.H.K. 1971. The populations, growth and production of fish in four small streams in southern England. J. Anim. Ecol. 40: 155–190.

    Article  Google Scholar 

  • Marten, G.G. 1970. A regression method for mark-recapture estimation of population size with unequal catchability. Ecology 51: 291–295.

    Article  Google Scholar 

  • Moran, P.A.P. 1951. A mathematical theory of animal trapping. Biometrika 38: 307–311.

    Article  Google Scholar 

  • Mortensen, E. 1977. The population dynamics of young trout (Salmo trutta L.) in a Danish brook. J. Fish Biol. 10: 23–33.

    Article  Google Scholar 

  • Murphy, M.L., C.P. Hawkins & N.H. Anderson. 1981. Effects of canopy modification and accumulated sediment on stream communities. Trans. Amer. Fish. Soc. 110: 469–478.

    Article  Google Scholar 

  • Neves, R.J. & G.B. Pardue. 1983. Abundance and production of fishes in a, small Appalachian stream. Trans. Amer. Fish. Soc. 112: 21–26.

    Article  Google Scholar 

  • Otis, D.L., K.P. Burnham, G.C. White & D.R. Anderson. 1978. Statistical inference from capture data on closed animal populations. Wildlife Monogr. 62: 1–135.

    Google Scholar 

  • Pasanen, S., M. Viljanen & E. Pulkkinen. 1979. Stress caused by the ‚mark-recapture’ method to Coregonus albula (L.) J. Fish Biol. 14: 597–605.

    Article  Google Scholar 

  • Peterson, N.P. & C.J. Cederholm. 1984. A comparison of the removal and mark-recapture methods of population estimation for juvenile coho salmon in a small stream. N. Amer. J. Fish. Manag. 4: 99–102.

    Article  Google Scholar 

  • Petrosky, C.E. & T.F. Waters. 1975. Annual production by the slimy sculpin population in a small Minnesota trout stream. Trans. Amer. Fish. Soc. 104: 237–244.

    Article  Google Scholar 

  • Pollock, K.H. 1981. Capture-recapture models allowing for age-dependent survival and capture rates. Biometrics 37: 521–529.

    Article  Google Scholar 

  • Pollock, K.H. 1982. A capture-recapture design robust to unequal probability of capture. J. Wildl. Manag. 46: 752–757.

    Google Scholar 

  • Pollock, K.H., D.L. Solomon & D.S. Robson. 1974. Tests for mortality and recruitment in a K-sample tag-recapture experiment. Biometrics 30: 77–87.

    Article  CAS  Google Scholar 

  • Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 1–382.

    Google Scholar 

  • Robson, D.S. & W.A. Flick. 1965. A non-parameterc statistical method for culling recruits from a mark-recapture experiment. Biometrics 21: 936–947.

    Article  Google Scholar 

  • Robson, D.S. & H.A. Regier. 1964. Sample size in Petersen mark-recapture experiments. Trans. Amer. Fish. Soc. 93: 215–226.

    Article  Google Scholar 

  • Roff, D.A. 1973. An examination of some statistical tests used in the analysis of mark-recapture data. Oecologia (Berlin) 12: 35–54.

    Article  Google Scholar 

  • Schnute, J. 1983. A new approach to estimating populations by the removal method. Can. J. Fish. Aquat. Sci. 40: 2153–2169.

    Article  Google Scholar 

  • Seber, G.A.F. 1973. The estimation of animal abundance and related parameters. Hafner Press, New York. 506 pp.

    Google Scholar 

  • Seber, G.A.F. & E.D. LeCren. 1967. Estimating population parameters from catches large relative to the population. J. Anim. Ecol. 36: 631–643.

    Article  Google Scholar 

  • Seber, G.A.F. & J.F. Whale. 1970. The removal method for two and three samples. Biometrics 28: 393–400.

    Article  Google Scholar 

  • Serns, S.L. 1982. Relationship of walleye fingerling density and electrofishing catch per effort in northern Wisconsin lakes. N. Amer. J. Fish. Manag. 2: 38–44.

    Article  Google Scholar 

  • Skalski, J.R. & D.S. Robson. 1982. A mark and removal field procedure for estimating population abundance. J. Wildl. Manag. 46: 741–751.

    Google Scholar 

  • Skalski, J.R., D.S. Robson & M.A. Simmons. 1983. Comparative census procedures using single mark-recapture methods. Ecology 64: 752–760.

    Article  Google Scholar 

  • Stauffer, T.M. 1979. Two-year cycles of abundance of Age-0 rainbow trout in Lake Superior tributaries. Trans. Amer. Fish. Soc. 108: 542–547.

    Article  Google Scholar 

  • Tanaka, R. & M. Kanamori. 1967. New regression formula to estimate the whole population for recapture-addicted small mammals. Research Pop. Ecol. 9: 83–94.

    Google Scholar 

  • Thorpe, J.E. 1974. Estimate of the number of brown trout Salmo truua (L.) in Loch Leven, Kinross, Scotland. J. Fish Biol. 6: 135–152.

    Article  Google Scholar 

  • Vincent, R. 1971. River electrofishing and fish population estimates. Progr. Fish-Culturist 33: 163–169.

    Google Scholar 

  • Wilbur, H.M. & J.M. Landwehr. 1974. The estimation of population size with equal and unequal risks of capture. Ecology 55: 1339–1348.

    Article  Google Scholar 

  • Williams, R. & M.R. Harcup. 1974. The fish populations of an industrial river in south Wales. J. Fish Biol. 6: 395–414.

    Article  Google Scholar 

  • Workman, D.L. 1981. Recovery of rainbow trout and brown trout populations following chemical poisoning in Sixteenmile Creek, Montana. N. Amer. J. Fish. Manag. 1: 144–150.

    Article  Google Scholar 

  • Zippin, C. 1956. An evaluation of the removal method of estimating animal populations. Biometrics 12: 163–169.

    Article  Google Scholar 

  • Zippin, C. 1958. The removal method of population estimation. J. Wildl. Manag. 22: 82–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatz, A.J., Loar, J.M. Petersen and removal population size estimates: combining methods to adjust and interpret results when assumptions are violated. Environ Biol Fish 21, 293–307 (1988). https://doi.org/10.1007/BF00000377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00000377

Key words

Navigation