Skip to main content
Log in

Genetics of ectomycorrhizal fungi: progress and prospects

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The variability within and among ectomycorrhizal species provides a substantial genetic resource and the potential to increase forest productivity and environmental sustainability. Two parallel and interacting approaches, classical and molecular genetics, are being developed to acquire the genetic information underpinning selection of improved ectomycorrhizal strains. Determining the genetic traits of the fungi which contribute to symbiosis and plant function are being followed using natural variability combined with classical and molecular genetic manipulations. Classical and molecular manipulations for breeding rely on key information including sexual and parasexual reproduction, postmeiotic nuclear behaviour, mating-types and vegetative incompatibility mechanisms. Progress in the manipulation of genomes of ectomycorrhizal fungi will depend on efficient methods for gene cloning and DNA transformation. Gene transfer into fungal cells have been shown to be successful and include treatment of protoplasts and intact mycelium with naked DNA in the presence of polyvalent cations, electroporation, and microbombardment. The merits and limitations of these methods are discussed. Using this technology the expression of foreign DNA, the functional analysis of fungal DNA sequences, as well as molecular exploitation for commercial purposes can be carried out. This review concentrates on these aspects of fungal molecular biology and discusses the applications of the experimental systems that are currently available to ectomycorrhizal fungi. As it is essential to be able to define the traits which a breeder is seeking to improve, availability of genetically defined strains that are isogenic for a character or differ only in one character and a thorough knowledge of the biochemistry of the symbiosis will be necessary before any genetic manipulation be carried out. Genetic variability of ectomycorrhizal strains has been assessed by DNA fingerprinting. This approach allows the evaluation of DNA variability and the exchange of genetic information in natural populations, the identification of species and isolates by DNA polymorphisms, and tracking the environmental fate of the introduced fungi to determine their survival, growth, and dissemination within the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ArmaleoD, YeG N, KleinT M, SharkK B, SanfordJ C and JohnstonS A 1990 Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr. Genet. 17, 97–103.

    Article  PubMed  CAS  Google Scholar 

  • ArmstrongJ L, FowlesN L and RygiewiczP T 1989 Restriction fragment length polymorphisms distinguish ectomycorrhizal fungi. Plant Soil 116, 1–7.

    Article  CAS  Google Scholar 

  • BarrettV, DixonR K and LemkeP A 1990 Genetic transformation of a mycorrhizal fungus. Appl. Microbiol. Biotech. 33, 313–316.

    Article  CAS  Google Scholar 

  • BarrettV, LemkeP A and DixonR K 1989 Protoplast formation from selected species of ectomycorrhizal fungi. Appl. Microbiol. Biotech. 30, 381–387.

    Article  Google Scholar 

  • BougherN L, TommerupI C and MalajczukN 1991 Taxonomy, nuclear behaviour in the basidiomes, and ectomycorrhizas of Hebeloma westraliense sp. nov. Mycol. Res. 95, 683–688.

    Google Scholar 

  • BrunsT D, FogelR, WhiteT J and PalmerJ D 1989 Accelerated evolution of a false-truffle from a mushroom ancestor. Nature 339, 140–142.

    Article  PubMed  CAS  Google Scholar 

  • CasseltonL A and EconomouA 1985 Dikaryon formation. In Developmental Biology of Higher Fungi. Eds. DMoore, L ACasselton, D AWood and J CFrankland. pp 213–229. Cambridge University Press, Cambridge.

    Google Scholar 

  • ChakrabortyB N and KapoorM 1990 Transformation of filamentous fungi by electroporation. Nucl. Acid. Res. 18, 6737.

    CAS  Google Scholar 

  • DahlbergA and StenlidJ 1990 Population structure and dynamics in Suillus bovinus as indicated by spatial distribution of fungal clones. New Phytol. 115, 487–493.

    Article  Google Scholar 

  • DebaudJ C and GayG 1987 In vitro fruiting under controlled conditions of the ectomycorrhizal fungus Hebeloma cylindrosporum associated with Pinus pinaster. New Phytol. 105, 429–435.

    Article  Google Scholar 

  • DebaudJ C, GayG, PrevostA, LeiJ and DexheimerJ 1988 Ectomycorrhizal ability of genetically different homokaryotic and dikaryotic mycelia of Hebeloma cylindrosporum. New Phytol. 108, 323–328.

    Article  Google Scholar 

  • DoudrickR L, FurnierG R and AndersonN A 1990 The number and distribution of incompatibility alleles in Laccaria laccata var. moelleri (Agaricales). Phytopathol. 80, 869–872.

    Google Scholar 

  • DurandN, DebaudJ C, CasseltonL A and GayG 1992 Isolation and preliminary characterization of 5-fluoroindole-resistant and IAA-overproducer mutants of the ectomycorrhizal fungus Hebeloma cylindrosporum Romagnesi. New Phytol. 121, 545–553.

    Article  CAS  Google Scholar 

  • FinchamJ R S 1989 Transformation in fungi. Microbiol. Rev. 53, 148–170.

    PubMed  CAS  Google Scholar 

  • FriesN and MuellerG M 1984 Incomptibility systems, cultural features, and species circumscriptions in the ectomycorrhizal genus Laccaria (Agaricales). Mycologia 76, 633–642.

    Google Scholar 

  • FriesN and NeumannW 1990 Sexual incompatibility in Suillus luteus and S. granulatus, Mycol. Res. 94, 64–70.

    Article  Google Scholar 

  • GardesM, FortinJ A, MuellerG M and KroppB R 1990 Restriction fragment length polymorphisms in the nuclear ribosomal DNA of four Laccaria spp.: L. bicolor, L, laccata, L. proxima, and L. amethystina, Phytopathology 80, 1312–1317.

    CAS  Google Scholar 

  • GardesM, WhiteT J, FortinJ A, BrunsT D and TaylorJ W 1991a Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can. J. Bot. 69, 180–190.

    CAS  Google Scholar 

  • GardesM, MuellerG M, FortinJ A and KroppB R 1991b Mitochondrial DNA polymorphisms in Laccaria bicolor. L. laccata, L. proxima and L. amethystina. Mycol. Res. 95, 206–216.

    Google Scholar 

  • GayG and DebaudJ C 1987 Genetic study on indole-3-acetic acid production by Hebeloma species: inter- and intra-specific variability in homo- and di-karyotic mycelium. App. Microbiol. Biotech. 26, 141–146.

    Article  CAS  Google Scholar 

  • GlassN L and LorimerI A J 1991 Ascomycete mating types In More Gene Manipulations in Fungi. Eds. J WBennett and L LLasure. pp 193–216. Academic Press, San Diego.

    Google Scholar 

  • GoldmanG H, VanMontaguM and Herrera-EstrellaA 1990 Transformation of Trichoderma harzianum by high-voltage electric pulse. Curr. Genet. 17, 169–174.

    Article  CAS  Google Scholar 

  • GolsteinA H and LiuS T 1987 Molecular cloning and regulation of a mineral phosphate solubiliqing gene from Erwinia herbicola, Biotechnol. 5, 72–74.

    Article  Google Scholar 

  • GroveT S and Le TaconF 1993 Mycorrhiza in plantation forestry. In Mycorrhiza Synthesis. Advances in Plant Pathology Vol 9. Ed. I CTommerup. pp 191–227 Academic Press, London.

    Google Scholar 

  • HebraudM and FevreM 1988 Protoplast production and regeneration from mycorrhizal fungi and their use for isolation of mutants. Can. J. Microbiol. 34, 157–161.

    Article  Google Scholar 

  • HenrionB, Le TaconF and MartinF 1992 Rapid identification of genetic variation of ectomycorrhizal fungi by amplification of ribosomal RNA genes. New Phytol. 122, 289–298.

    Article  CAS  Google Scholar 

  • KleinT M, WolfE D, WuR and SanfordJ C 1987 Highvelocity microprojectiles for delivering nucleic acids into living cells. Nature 327, 70–73.

    Article  CAS  Google Scholar 

  • KroppB R and FortinJ A 1986 Formation and regeneration of protoplasts from the ectomycorrhizal basidiomycete Laccaria bicolon, Can. J. Bot. 64, 1224–1226.

    Article  Google Scholar 

  • KroppB R, McAfeeB J and FortinJ A 1987 Variable loss of ectomycorrhizal ability in monokaryotic and dikaryotic cultures of Laccaria bicolor, Can. J. Bot. 65, 500–504.

    Google Scholar 

  • KüesU and CasseltonL A 1992 Homeodomains and regulation of sexual development in basidiomycetes. TIG 8, 154–155.

    PubMed  Google Scholar 

  • LamhamediM S, FortinJ A, KopeH H and KroppB R 1990 Genetic variation in ectomycorrhiza formation by Pisolithus arhizus on Pinus pinaster and Pinus banksiana. New Phytol. 115, 689–697.

    Article  Google Scholar 

  • LemkeP A BarrettB and DixonR K 1991 Procedures and prospects for DNA mediated transformation of ectomycorrhizal fungi. In Methods in Microbiology, Vol. 23, Eds. J RNorris, D JRead and A KVarma. pp 281–293 Academic Press, London.

    Google Scholar 

  • LoBuglioK F, RogersS O and WangC J K 1991 Variation in ribosomal DNA among isolates of the mycorrhizal fungus Cenococcum geophilum. Can. J. Bot. 69, 2331–2343.

    CAS  Google Scholar 

  • MalajczukN, LapeyrieF and GarbayeJ 1990 Infectivity of pine and eucalypt isolates of Pisolithus tinctorius on roots of Eucalyptus urophylla in vitro. I. Mycorrhiza formation in model systems. New Phytol. 114, 627–631.

    Article  Google Scholar 

  • MarmeisseR, GayG, DebaudJ C and CasseltonL A 1992a Genetic transformation of the ectomycorrhizal fungus Hebeloma cylindrosporum, Curr. Genet. 22, 41–45.

    Article  PubMed  CAS  Google Scholar 

  • MarmeisseR, DebaudJ C and CasseltonL A 1992b DNA probes for species identification in the ectomycorrhizal fungus Hebeloma. Mycol. Res. 96, 161–165.

    CAS  Google Scholar 

  • MartinF and HilbertJL 1991 Morphological. biochemical and molecular changes during ectomycorrhiza development. Experientia 47, 321–331.

    Article  CAS  Google Scholar 

  • MartinF, ZaiouM, LeTaconF and RygiewiczP 1991 Strain specific differences in ribosomal DNA from the ectomycorrhizal fungi Laccaria bicolor (Maire) Orton and Laccaria laccata (Scop ex Fr) Br. Ann. Sci. For. 48, 133–142.

    Google Scholar 

  • MartinF, PythonM, TaguD 1992 Molecular cloning of symbiosis-related genes in the eucalypt ectomycorrhiza. In The International Symposium on Management of Mycorrhizas in Agriculture, Horticulture and Forestry, The University of Western Australia, Nedlands (Abstracts). p 157.

    Google Scholar 

  • MuellerG M and GardesM 1991 Intra- and inter-specific relations within Laccaria bicolor sensu lato. Mycol. Res. 95, 592–601.

    CAS  Google Scholar 

  • SaikiR K, GelfandD H, StoffelS, ScharfS J, HiguchiR, HornG T, MullisK B and ErlichH A 1988 Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    PubMed  CAS  Google Scholar 

  • Schründer J, Debaud J C and Meinhardt F 1991 Adenoviral-like genetic elements in Hebeloma circinans, In Mycorrhizas in Ecosystems—Structure and Function, Abstract 3rd ESM Sheffield, UK.

  • SenR 1990a Intraspecific variation in two species of Suillus from Scots pine (Pinus sylverstris L.) forests based on somatic incompatibility and isozyme analysis. New Phytol. 114, 607–616.

    Article  CAS  Google Scholar 

  • SenR 1990b Isozymic identification of individual ectomycorrhizas synthesized between Scots pine (Pinus sylvestris L.) and isolates of two species of Suillus. New Phytol. 114, 617–622.

    Article  CAS  Google Scholar 

  • TommerupI C 1988 Tissue culture technique to improve ectomycorrhizal fungi for increasing forestry production. Inst. For. Aust. Newsletter 29, 10–11.

    Google Scholar 

  • TommerupI C 1992 Genetics of eucalypt ectomycorrhizal fungi. In International Symposium on Recent Topics in Genetics, Physiology and Technology of Basidiomycetes. Eds. MMiyaji, ASuzuki and KNishimura. pp 74–79. Chiba University, Chiba, Japan.

    Google Scholar 

  • TommerupI C and MalajczukN 1993 Genetics and Molecular Genetics of Mycorrhiza, In Mycorrhiza Synthesis. Advances in Plant Pathology Vol 9. Ed. I CTommerup. pp 103–134. Academic Press, London.

    Google Scholar 

  • TommerupI C, BougherN L, and MalajczukN 1991 Laccaria fraterna in south Western Australia, a common ectomycorrhizal fungus with mono- and bi-sporic basidia: its nuclear behaviour and taxonomy, and Hydnangium carneum, a secondarily homothallic secotoid relative. Mycol. Res. 95, 689–698.

    Google Scholar 

  • TommerupI C, BartonJ E and O'BrienP A 1992 RAPD fingerprinting of Laccaria, Hydnangium and Rhizoctonia isolates. In The International Symposium on Management of Mycorrhizas in Agriculture, Horticulture and Forestry, The University of Western Australia, Nedlands (Abstract). p 161.

    Google Scholar 

  • WelshJ and McClellandM 1990 Fingerprinting genomes using PCR with arbitrary primers. Nuc. Acid. Res. 18, 7213–7218.

    CAS  Google Scholar 

  • WilliamsJ G K, KubelikA R, LivakK J, RafalskiJ A and TingeyS V 1990 DNA polymorphisms amplified by arbitrary primers are useful genetic markers. Nucl. Acid. Res. 18, 6531–6535.

    CAS  Google Scholar 

  • WyssP and BonfanteP 1992 Identification of mycorrhizal fungi by DNA fingerprinting using short arbitrary primers In The International Symposium on Management of Mycorrhizas in Agriculture, Horticulture and Forestry, The University of Western Australia, Nedlands (Abstracts). p 154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, F., Tommerup, I.C. & Tagu, D. Genetics of ectomycorrhizal fungi: progress and prospects. Plant Soil 159, 159–170 (1994). https://doi.org/10.1007/BF00000105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00000105

Key words

Navigation