Skip to main content
Log in

Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

During the establishment of vesicular-arbuscular mycorrhizas, fungal hyphae contact the root surface, form appressoria and initiate the internal colonization phase. Structural changes occur in the cell wall, the cytoplasm and the nucleus as the fungus progresses from a presymbiotic to a symbiotic phase. Nuclei in spores are in G1 whereas in intraradical hyphae they are in G1 and G2. Changes in nuclear organization are evident in various stages in the colonization process. Dramatic changes in both symbionts occur as the nutrient exchange interface is established between arbuscules and root cortical cells. An interfacial matrix, consisting of molecules common to the primary wall of the cortical cell, separates the cortical cell plasma membrane from the fungal cell wall.

Ectomycorrhizas are characterized structurally by the presence of a mantle of fungal hyphae enclosing the root and usually an Hartig net of intercellular hyphae characterized by labyrinthine branching. As hyphae contact the root surface, they may respond by increasing their diameter and switching from apical growth to precocious branching. The site of initial contact of hyphae may be either the root cap or the ‘mycorrhiza infection zone’. The mantle varies considerably in structure depending on both the plant and fungus genome. In some ectomycorrhizas, the mantle may be a barrier to apoplastic transport, and in most it may store polyphosphate, glycogen, lipids and perhaps protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AllawayW G, CarpenterJ L and AshfordA E 1985 Amplification of inter-symbiont surface by root epidermal transfer cells in the Pisonia mycorrhiza. Protoplasma 128, 227–231.

    Article  Google Scholar 

  • AshfordA E and AllawayW E 1985 Transfer cells and Hartig net in the root epidermis of the sheathing mycorrhiza of Pisonia grandis R.Br. from Seychelles. New Phytol. 100, 595–612.

    Article  Google Scholar 

  • AshfordA E, PetersonC A, CarpenterJ L, CairneyJ W G and AllawayW G 1988 Structure and permeability of the fungal sheath in the Pisonia mycorrhiza. Protoplasma 147, 149–161.

    Article  Google Scholar 

  • AshfordA E, AllawayW G, PetersonC A and CairneyJ W G 1989 Nutrient transfer and the fungus-root interface. Aust. J. Plant Physiol. 16, 85–97.

    Article  CAS  Google Scholar 

  • BalestriniR, BianciottoV and Bonfante-FasoloP 1992a Nuclear architecture and DNA location in two VAM fungi. Mycorrhiza 1, 105–112.

    Article  Google Scholar 

  • BalestriniR, BertaG and BonfanteP 1992b The plant nucelus in mycorrhizal roots: positional and structural modifications. Biol. Cell. 75, 235–243.

    Article  Google Scholar 

  • BécardG and PichéY 1989 New aspects on the acquisition of biotrophic status by a vesicular arbuscular mycorrhizal fungus Gigaspora margarita. New Phytol. 112, 77–83.

    Article  Google Scholar 

  • BécardG, DoudsD D and PfefferP E 1992 Extensive in vitro growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl. Environ. Microbiol. 58, 821–825.

    PubMed  Google Scholar 

  • Behrmann P and Heyser W 1991 Apoplastic transport through the fungal sheath of Pinus sylvestris / Suillus bovinus mycorrhizae. In Mycorrhizas in Ecosystems-Structure and Function, Abstracts 3rd ESM, Sheffield.

  • BertaG, SgorbatiS, SolerV, FusconiA, TrottaA, CitterioA, BottoneMG, SparvoliE and ScanneriniS 1990 Variations in chromatin structure in host nuclei of a vesicular arbuscular mycorrhiza. New Phytol. 114, 199–205.

    Article  Google Scholar 

  • BianciottoV and BonfanteP 1992 Quantification of the nuclear DNA content of two VAM fungi. Mycol. Res. 96, 1071–1076.

    Article  Google Scholar 

  • BlairD A, PetersonR L and BowleyS R 1988 Nuclear DNA content in root cells of Lotus and Trifolium colonized by the VAM fungus, Glomus versiforme. New Phytol. 109, 167–170.

    Article  CAS  Google Scholar 

  • BonfanteP 1984 Anatomy and morphology. In V. A. Mycorrhizas. Eds. C LPowell and D JBagyaraj. pp 5–33. CRC Press, Boca Raton, USA.

    Google Scholar 

  • BonfanteP and PerottoS 1992 Plants and endomycorrhizal fungi: the cellular and molecular basis of their interaction. In Molecular signals in Plant-Microbe communication. Ed. D PVerma. pp 445–470. CRC Press, Boca Raton, USA.

    Google Scholar 

  • Bonfante-FasoloP and ScanneriniS 1992 The cellular basis of plant-fungus interchanges in mycorrhizal associations. In Mycorrhizal Functioning. Ed. MAllen. pp 65–101. Chapman and Hall, New York.

    Google Scholar 

  • Bonfante P, Perotto R and Perotto S 1992 Cell surface interactions in endomycorrhizal symbiosis. In Perspectives in Plant Cell recognition. Eds. J A Callow and J R Green. Cambridge University Press (in press).

  • BradburyS M, PetersonR L and BowleyS R 1991 Interactions between three alfalfa nodulation genotypes and two Glomus species. New Phytol. 119, 115–120.

    Article  Google Scholar 

  • BrundrettM C and KendrickB 1990 The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol. 114, 469–479.

    Article  Google Scholar 

  • BrundrettM C, PichéY and PetersonR L 1985 A developmental study of the early stages in vesicular-arbuscular mycorrhiza formation. Can. J. Bot. 63, 194–194.

    Article  Google Scholar 

  • BrunnerI and ScheideggerC 1992 Ontogeny of synthesized Picea abies (L.) Karst.-Hebeloma crustuliniforme (Bull. ex St Amans) Quél. ectomycorrhizas. New Phytol. 120, 359–369.

    Article  Google Scholar 

  • BurggraafA J P and BeringerJ E 1989 Absence of nuclear DNA synthesis in vesicular-arbuscular mycorrhizal fungi during in vitro development. New Phytol. 111, 25–33.

    Article  Google Scholar 

  • ChalotM, StewartG R, BrunA, MartinF and BottonB 1991 Ammonium assimilation by Spruce-Hebeloma sp. ectomycorrhizas. New Phytol. 119, 541–550.

    Article  CAS  Google Scholar 

  • ChilversG A, DouglassP A and LapeyrieF F 1986 A paper-sandwich technique for rapid synthesis of ectomycorrhizas. New Phytol. 103, 397–402.

    Article  Google Scholar 

  • ClowesF A L 1951 The structure of mycorrhizal roots of Fagus sylvatica. New Phytol. 50, 1–16.

    Article  Google Scholar 

  • DuddridgeJ A 1986 Specificity and recognition in mycorrhizal associations. In Physiological and Essential Aspects of Mycorrhizae. Eds. VGianinazzi-Pearson and SGianinazzi. pp 45–48. Institut National de la Recherche Agronomique, Paris.

    Google Scholar 

  • FortinJ A, PichéY and LalondeM 1980 Technique for the observation of early morphological changes during ectomycorrhiza formation. Can. J. Bot. 58, 361–365.

    Google Scholar 

  • GarriockM L, PetersonR L and AckerleyC A 1989 Eary stages in colonization of Allium porrum (leek) roots by the VAM fungus, Glomus versiforme. New Phytol. 112, 85–92.

    Article  Google Scholar 

  • Gianinazzi-PearsonV, GianinazziS, GuilleminJ P, TrouvelotA and DucG 1991 Genetic and cellular analysis of resistance to vesicular-arbuscular (VA) mycorrhizal fungi in pea mutants, In Advances in Molecular Genetics of Plant-Microbe Interactions. Eds. HHennecke and P SVerma. pp 36–342. Kluwer Academic Publishers. The Netherlands.

    Google Scholar 

  • Giovannetti M, Sbraba C, Avio L and Citernesi S 1991 Appressorium formation in VAM fungi in presence of host and non-host plants. Abstracts, Fungal Cell Biology: Cytology and Ultrastructure, April 1991, Portsmouth, U.K.

  • HepperM C 1984 Isolation and culture of VA mycorrhizal (VAM) fungi. In VA mycorrhizas. Eds. C LPowell and D JBagyaraj. pp 95–112. CRC Press, Boca Raton.

    Google Scholar 

  • HoranD P and ChilversG A 1990 Chemotropism-the key to ectomycorrhizal formation? New Phytol. 116, 297–301.

    Article  CAS  Google Scholar 

  • HoranD P, ChilversG A and LapeyrieF F 1988 Time sequence of the infection process in eucalypt ectomycorrhizas. New Phytol. 109, 451–458.

    Article  Google Scholar 

  • JacobsP F, PetersonR L and MassicotteH B 1989 Altered fungal morphogenesis during early stages of ectomycorrhiza formation in Eucalyptus pilularis. Scanning Microsc. 3, 249–255.

    Google Scholar 

  • KottkeI and OberwinklerF 1986 Mycorrhiza of forest trees—structure and function. Trees 1, 1–24.

    Article  Google Scholar 

  • LeiJ and DexheimerJ 1988 Ultrastructural localization of ATPase activity in the Pinus sylvestris/Laccaria laccata ectomycorrhizal association. New Phytol. 108, 329–334.

    Article  CAS  Google Scholar 

  • LeiJ, LapeyrieF, MalajczukN and DexheimerJ 1990 Infectivity of pine and eucalypt isolates of Pisolithus tinctorius (Pers.) Coker and Couch on roots of Eucalyptus urophylla S.T. Blake in vitro. II. Ultrastructural and biochemical changes at the early stage ofmycorrhiza formation. New Phytol. 116, 115–122.

    Article  CAS  Google Scholar 

  • LeiJ, WongK K Y and PichéY 1991 Extracellular concanavalin A-binding sites during early interactions between Pinus banksiana and two closely related genotypes of the ectomycorrhizal basidiomycete Laccaria bicolor. Mycol. Res. 952, 357–363.

    Article  Google Scholar 

  • MalajczukN, LapeyrieF and GarbayeJ 1990 Infectivity of pine and eucalypt isolates of Pisolithus tinctorius on roots of Eucalyptus urophylla in vitro. 1. Mycorrhiza formation in model systems. New Phytol. 114, 627–631.

    Article  Google Scholar 

  • MassicotteH B, PetersonR L, AckerleyC A and PichéY 1986 Structure and ontogeny of Alnus crispa-Alpova diplophloeus ectomycorrhizae. Can. J. Bot. 64, 177–192.

    Google Scholar 

  • MassicotteH B, MelvilleL H and PetersonR L 1987 Scanning electron microscopy of ectomycorrhizae potential and limitations. Scanning Microsc. 1, 1439–1454.

    Google Scholar 

  • MassicotteH B, PetersonR L, AckerleyC A and MelvilleL H 1990 Structure and ontogeny of Betula alleghaniensis-Pisolithus tinctorius ectomycorrhizae. Can. J. Bot. 68, 579–583.

    Google Scholar 

  • MelvilleL H, MassicotteH B and PetersonR L 1987 Ontogeny of ectomycorrhiza synthesized between Dryas integrifolia and Hebeloma cylindrosporum. Bot. Gaz. 148, 332–341.

    Article  Google Scholar 

  • MelvilleL H, MassicotteH B, AckerleyC A and PetersonR L 1988 An ultrastructural study of modifications in Dryas integrifolia and Hebeloma cylindrosporum during ectomycorrhiza formation. Bot. Gaz. 149, 408–418.

    Article  Google Scholar 

  • NylundJ E 1980 Symplastic continuity during Hartig net formation in Norway spruce ectomycorrhizae. New Phytol. 86, 373–378.

    Article  Google Scholar 

  • Paris F, Dexheimer J and Lapeyrie F 1991 Cytochemical evidence of a fungal cell wall modification during infection of Eucalyptus roots by the ectomycorrhizal fungus Cenococcum geophilum. In Mycorrhizas in Ecosystems-Structure and Function, Abstracts 3rd ESM, Sheffield, UK.

  • PichéY and PetersonR L 1988 Mycorrhiza initiation: an example of plant-microbial interactions. In Forest and Crop Biotechnology Progress and Prospects. Ed. F AValentine. pp 298–313. Springer-Verlag, New York.

    Google Scholar 

  • Piché Y, Peterson R L and Ackerley C A 1983a Early development of ectomycorrhizal short roots of pine. Scanning Electron Microsc. III, 1467–1474.

  • PichéY, PetersonR L, HowarthM J and FortinJ A 1983b A structural study of the interaction between the ectomycorrhizal fungus Pisolithus tinctorius and Pinus strobus roots. Can. J. Bot. 61, 1185–1193.

    Google Scholar 

  • SmithS E and SmithF A 1990 Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol. 114, 1–38.

    Article  CAS  Google Scholar 

  • Timonin S, Finlay R D, Söderström B and Raudaskoski M 1991 Identification of cytoskeletal proteins in pine ectomycorrhizas. In Mycorrhizas in Ecosystems-Structure and Function, Abstracts, 3rd ESM, Sheffield, UK.

  • WarcupJ H 1980 Ectomycorrhizal associations of Australian indigenous plants. New Phytol. 85, 531–535.

    Article  Google Scholar 

  • Warner J and Heyser W 1991 Solute transfer in Pinus sylvestris / Suillus bovinus ectomycorrhizae. I. Microautoradiography of 14C-labelled photoassimilate. In Mycorrhizas in Ecosystems-Structure and Function, Abstracts, 3rd ESM, Sheffield, UK.

  • WongK K, PichéY and FortinJ A 1990 Differential development of root colonization among four closely related genotypes of ectomycorrhizal Laccaria laccata. Mycol. Res. 94, 876–884.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, R.L., Bonfante, P. Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant Soil 159, 79–88 (1994). https://doi.org/10.1007/BF00000097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00000097

Key words

Navigation