Skip to main content
Log in

Levels of diversity in endomycorrhizal fungi (Glomales, Zygomycetes) and their role in defining taxonomic and non-taxonomic groups

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Diversity in glomalean fungi is manifested at the molecular, morphological, and ecological levels. Characters at any of these levels can be ordered into hierarchical patterns defining taxonomic groups if they are conserved enough to be heritable through geologic time in all descendants of a common ancestor. At present, only morphological characters associated with mode of spore formation and in subcellular structure of spores are sufficiently stable and diverse to recognize at least 150 species. Ontogenetic comparisons indicate that species integrity, despite asexual reproduction, is the result of rigid internal constraints imposed on variation during the process of spore subcellular differentiation. Epigenetic factors dominate because the differentiation sequence is linear and each new stage is causally linked to preceding stages. Some morphological characters of the fungal mycelium also exist, but they define more inclusive groups at the family level and above. Most diversity in the mycorrhizae consists of life-history traits associated with abundance and architecture of fungal components, their rate of formation and longevity, and their cost in the symbiosis. These characters participate in processes at the molecular and ecological levels, so they are autonomous from morphological determinants. They often are labile or affected by external environmental conditions, so fewer stable taxonomic characters are likely to be discovered. Instead, molecular and ecological diversity has greater potential to define; (a) niche specificity of organisms/populations and (b) causal processes linked to host-fungus compatibility and mycorrhizal efficiency. Any taxonomic characters that relate to mycorrhizal functions will come only from comparative studies involving organisms from shared habitats rather than those having shared spore morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbbottL K 1982 Comparative anatomy of vesicular-arbuscular mycorrhizas formed on subterranean clover. Aust. J. Bot. 30, 485–499.

    Article  Google Scholar 

  • AbbottL K and RobsonA D 1979 A quantitative study of the spores and mycorrhizas formed by a species of Glomus with reference to its taxonomy. Aust. J. Bot. 27, 363–375.

    Article  Google Scholar 

  • AldwellF E B, HallI R, and SmithJ M B 1983 The identification of vesicular-arbuscular mycorrhizal fungi using immunofluorescence. Soil Biol. Biochem. 15, 439–445.

    Article  Google Scholar 

  • AlexopolousC J and MimsC W 1979 Introductory Mycology. Third Ed. Wiley and Sons, New York. 632 p.

    Google Scholar 

  • BerchS M 1986 Endogonaceae: Taxonomy, specificity, fossil record, phylogeny. Front. Appl Microbiol. 2, 161–188.

    Google Scholar 

  • BethlenfalvayG J, FransonR L, BrownM S and MiharaK L 1989 The Glycine-Glomus-Bradyrhizobium symbiosis. IX. Nutritional, morphological and physiological responses of nodulated soybean to geographic isolates of the mycorrhizal fungus Glomus mosseae. Physiol. Plant. 76, 226–232.

    Article  Google Scholar 

  • BoernerR E J 1990 Role of mycorrhizal fungus origin in growth and nutrient uptake by Geranium robertianum. Am. J. Bot. 77, 483–489.

    Article  Google Scholar 

  • BolanN S 1991 A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134, 189–207.

    Article  CAS  Google Scholar 

  • Bonfante-FasoloP 1984 Anatomy and morphology. In VA Mycorrhizas. Eds. C LPowell and D JBagyaraj. pp 5–33. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • BrundrettM 1991 Mycorrhizas in natural ecosystems. Adv. Ecol. Res. 21, 171–313.

    Article  Google Scholar 

  • BrundrettM and KendrickB 1990 The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol. 114, 469–479.

    Article  Google Scholar 

  • BrunsT D, WhiteT J and TaylorJ W 1991 Fungal molecular systematics. Annu. Rev. Ecol. Syst. 22, 525–564.

    Article  Google Scholar 

  • FitterA H 1991 Cost and benefits of mycorrhizas: Implications for functioning under natural conditions. Experientia 47, 350–355.

    Article  Google Scholar 

  • Franke M 1992 Relationships among species and isolates of arbuscular mycorrhizal fungi based on morphology, ontogeny, and plant-fungus interactions. M. Sc. Thesis, West Virginia University, Morgantown, West Virginia.

  • FrieseC F and AllenM F 1991 The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83, 409–418.

    Google Scholar 

  • GazeyC, AbbottL K and RobsonA D 1992 The rate of development of mycorrhizas affects the onset of sporulation and production of external hyphae by two species of Acaulospora. Mycol. Res. 96, 643–650.

    Google Scholar 

  • GianinazziS 1991 Vesicular-arbuscular (endo-) mycorrhizas: cellular, biochemical and genetic aspects. Agric. Ecos. Environ. 35, 105–119.

    Article  CAS  Google Scholar 

  • Gianinazzi-PearsonV and GianinazziS 1989 Phosphorus metabolism in mycorrhizas. In Nitrogen, Phosphorus and Sulfur utilization by Fungi. Eds. LBoddy, RMarchant and D JRead. pp 227–241. Cambridge University Press, Cambridge.

    Google Scholar 

  • GouldS J 1977 Ontogeny and Phylogeny. Belknap Press, Cambridge, MA.

    Google Scholar 

  • GroveS N 1976 Form and Function in zygomycete spores. In The Fungal Spore, Form and Function. Eds. D JWeber and W MHess. pp 559–592. Wiley and Sons, New York.

    Google Scholar 

  • Jabaji-HareS 1988 Lipid and fatty acid profiles of some vesicular-arbuscular mycorrhizal fungi: Contribution to taxonomy. Mycologia 80, 622–629.

    CAS  Google Scholar 

  • KlugeA J and StraussR E 1985 Ontogeny and systematics. Annu. Rev. Ecol. Syst. 16, 247–268.

    Article  Google Scholar 

  • KoideR T 1991 Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol. 117, 365–386.

    Article  CAS  Google Scholar 

  • LovtrupS 1974 Epigenetics—A Treatise on Theoretical Biology. John Wiley and Sons, New York.

    Google Scholar 

  • Maia L C 1991 Morphological and ultrastructural studies of spores and germ tubes of selected arbuscular mycorrhizal fungi (Glomales). Ph.D. Dissertation, University of Florida, Gainesville, Florida.

  • MallochD W, PirozynskiK A and RavenP H 1980 Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proc Nat. Acad. Sci. 77, 2113–2118.

    Article  PubMed  Google Scholar 

  • MaynardSmith J 1989 Evolutionary Genetics. Oxford University Press, Oxford, UK. 325 p.

    Google Scholar 

  • MaynardSmith J, BurlanR, KauffmanS, AlberchP, CampbellJ, GoodwinB, LandeR, RaupD and WolperL 1985 Developmental constraints and evolution. Q. Rev. Biol. 60, 265–287.

    Article  Google Scholar 

  • McGeeP A 1986 Further sporocarpic species of Glomus (Endogonaceae) from South Australia. Trans. Br. Mycol. Soc. 87, 123–129.

    Article  Google Scholar 

  • MishlerB D and BrandonR N 1987 Individuality, pluralism, and the phylogenetic species concept. Biol. Phil. 2, 397–414.

    Article  Google Scholar 

  • MojoH S and HendrixV W 1986 The mycorrhizal fungus Glomus macrocarpum as a cause of Tobacco Stunt Disease. Phytopathology 76, 688–691.

    Google Scholar 

  • MortonJ B 1988 Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32, 267–324.

    Google Scholar 

  • MortonJ B 1990a Species and clones of arbuscular mycorrhizal fungi (Glomales, Zygomycetes): their role in macro- and micro-evolutionary processes. Mycotaxon 37, 493–515.

    Google Scholar 

  • MortonJ B 1990b Evolutionary relationships among arbuscular mycorrhizal fungi in the Endogonaceae. Mycologia 82, 192–207.

    Google Scholar 

  • MortonJ B 1993 Problems and solutions for integration of glomalean taxonomy, systematic biology, and the study of endomycorrhizal phenomena. Mycorrhiza 2, 97–109.

    Article  Google Scholar 

  • MortonJ B and BennyG L 1990 Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37, 471–491.

    Google Scholar 

  • MortonJ, FrankeM and CloudG 1992 The nature of fungal species in Glomales (Zygomycetes). In Mycorrhiza in Ecosystems. Eds. D JRead, D HLewis, A HFitter and I JAlexander. pp 65–73. CAB International, Oxon, UK.

    Google Scholar 

  • MurphyR W, SitesJ WJr, ButhD G and HauflerC H 1990 Proteins I: Isozyme electrophoresis. In Molecular Systematics. Eds. D MHillis and CMoritz. pp 45–126. Sinauer Assoc., Inc. Sunderland, Mass.

    Google Scholar 

  • O'NeillE G, O'NeillR V and NorbyR J 1991 Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environ. Pollut. 73, 271–284.

    Article  PubMed  Google Scholar 

  • RiedlR 1978 Order in Living Organisms. Wiley-Interscience, New York.

    Google Scholar 

  • RosendahlS 1989 Comparisons of spore-cluster forming Glomus species (Endogonaceae) based on morphological characteristics and isoenzyme banding patterns. Opera Bot. 100, 215–223.

    Google Scholar 

  • SandersI R, RavolanirinaF, Gianinazzi-PearsonV, GianinazziS and LemoineM C 1992 Detection of specific antigens in the vesicular arbuscular mycorrhizal fungi Gigaspora margarita and Acaulospora laevis using polyclonal antibodies to soluble spore fractions. Mycol. Res. 96, 477–480.

    Google Scholar 

  • SchenckN C and PérezY 1990 Manual for the Identification of VA Mycorrhizal Fungi. 3rd Ed. Synergistic Publ., Gainesville, Forida.

    Google Scholar 

  • SchenckN C, SpainJ L, SieverdingE and HowelerR H 1984 Several new and unreported vesicular-arbuscular mycorrhizal fungi (Endogonaceae) from Colombia. Mycologia 76, 685–699.

    Google Scholar 

  • SenR and HepperC M 1986 Characterization of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) by selective enzyme staining following polyacrylamide gel electrophoresis. Soil Biol. Biochem. 18, 29–34.

    Article  Google Scholar 

  • Sieverding E 1991 Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems. Deutche Gesellschaft fur Technische Zusammenarbeit, Eschborn. 371 p.

  • SimonL, LalondeM and BrunsT D 1992 Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58, 291–295.

    PubMed  CAS  Google Scholar 

  • SmithS E and Gianinazzi-PearsonV 1988 Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 221–244.

    Article  CAS  Google Scholar 

  • SpainJ L, SieverdingE and SchenckN C 1989 Gigaspora ramisporophora: a new species with novel sporophores from Brazil. Mycotaxon 34, 667–677.

    Google Scholar 

  • StahlP D and ChristensenM 1991 Population variation in the mycorrhizal fungus Glomus mosseae: breadth of environmental tolerance. Mycol. Res. 95, 300–307.

    Article  Google Scholar 

  • StearnsS C 1970 Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47.

    Article  Google Scholar 

  • StebbinsG L 1974 Flowering Plants. Evolution Above the Species Level. Belknap Press Cambridge, Mass.

    Google Scholar 

  • StubblefieldS P, TaylorT N and TrappeJ M 1987 Fossil mycorrhizae: a case for symbiosis. Science 237, 59–60.

    PubMed  Google Scholar 

  • SylviaD M and BurksJ N 1988 Selection of a vesicular-arbuscular mycorrhizal fungus for practical inoculation of Uniola paniculata. Mycologia 80, 565–568.

    Google Scholar 

  • TommerupI C and SivasithamparamK 1990 Zygospores and asexual spores of Gigaspora decipiens, an arbuscular mycorrhizal fungus. Mycol. Res. 94, 897–900.

    Google Scholar 

  • WalkerC 1983 Taxonomic concepts in the Endogonaceae: Spore wall characteristics in species descriptions. Mycotaxon 18, 443–455.

    Google Scholar 

  • WalkerC and SandersF E 1986 Taxonomic concepts in the Endogonaceae. III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. and Trappe. Mycotaxon 27, 169–182.

    Google Scholar 

  • WileyE O 1981 Phylogenetics: The Theory and Practice of Phylogenetic Systematics. Wiley and Sons, New York.

    Google Scholar 

  • WrightS F, MortonJ B and SworobukJ E 1987 Identification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay. Appl. Environ. Microbiol. 53, 2222–2225.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morton, J.B., Bentivenga, S.P. Levels of diversity in endomycorrhizal fungi (Glomales, Zygomycetes) and their role in defining taxonomic and non-taxonomic groups. Plant Soil 159, 47–59 (1994). https://doi.org/10.1007/BF00000094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00000094

Key words

Navigation