3D Research

, 3:2 | Cite as

An application of enhanced 3D-CAD methods with integrated geometry creation algorithms for PVC-seams in automotive body in white design

  • Gernot Frener
  • Katharina Thum
  • Mario Hirz
  • Alexander Harrich
3DR Express

Abstract

State of the art automotive development processes are based on virtual product models, which include a digital representation of complete vehicle geometry and structures. Increasing computation performance and continuously growing demands on virtual development processes lead to the application of precise product representation within common CAD software packages. A specific challenge represents the creation of PVC-seams, which are used for corrosion protection of sheet metal components in automotive body in white design. Besides the high requirements of accurate geometric modeling in digital representation, modern development processes call for an increasing level of design automation. To fit both, the present approach introduces a method for an automatic generation of PVC-seams using the functionalities of commercial CAD software.

Keywords

automatic design methods automotive body in white & macro-based design DMU procedures PVC-seams 

References

  1. 1.
    M. Eigner, R. Stelzer (2009) Product Lifecycle Management — Ein Leitfaden für Product Development und Life Cycle Management, Springer Verlag, Berlin, Heidelberg, ISBN 978-3-540-44373-5.Google Scholar
  2. 2.
    K. Lee (1999) Principles of CAD/CAM/CAE Systems, Addison-Wesley Longman Inc., ISBN 0-201-38036-6.Google Scholar
  3. 3.
    M. Hirz, A. Harrich, P. Rossbacher (2011) Advanced computer aided design methods for integrated virtual product development processes, Computer-Aided Design and Applications, 8(6): 901–913, DOI: 10.3722/cadaps.2011.901-913.Google Scholar
  4. 4.
    M. Hirz, R. Kirchberger, T. Göber, M. Lang, J. Tromayer (2006) Integrierte 3D-CAD Konstruktionsstrategien im Motorenentwicklungsprozess, Symposium Konstruktionsmethodik Graz, Austria.Google Scholar
  5. 5.
    K. Abdel-Malek, J. Yang, D. Blackmore, K. Joy (2006) Swept volumes: Fundation, perspectives, and applications, International Journal of Shape Modeling, 12(1):87–127MATHCrossRefGoogle Scholar
  6. 6.
    M. Peternell, H. Pottmann, T. Steiner, H. Zhao (2005) Swept volumes., Computer-Aided Design and Applications 2(5): 599–608.Google Scholar
  7. 7.
    J. Yang, K. Abdel-Malek (2004) Approximate swept volumes of NURBS surfaces or solids, Computer Aided Geometric Design, 22(1): 1–263.MathSciNetCrossRefGoogle Scholar
  8. 8.
    L. H. You, X. Yang, M. Pachulski, J. J. Zhang, (2007) Boundary constrained swept surfaces for modeling and animation, Computer Graphics Forum, 26(3):313–322.CrossRefGoogle Scholar
  9. 9.
    S. -H. Yoon, M. -S. Kim (2006) Sweep-based freeform deformations, Computer Graphics Forum 25(3): 487–496.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Rossignac, J. J. Kim, S. C. Song, K.C. Suh, C.B. Joung (2007) Boundary of the volume swept by a free-form solid in screw motion. Computer-Aided Design, 39(9):745–755.CrossRefGoogle Scholar
  11. 11.
    J. Rossignac, J. J. Kim, HelSweeper (2012) Screw-sweeps of canal surfaces. Computer-Aided Design, 44(9):113–122.CrossRefGoogle Scholar
  12. 12.
    S. Azernikov (2010) Computer aided design of ventilation tubes for customized hearing aid devices, Computer-Aided Design, 42(2):87–94.CrossRefGoogle Scholar
  13. 13.
    T. Maekawa (1999) An overview of offset curves and surfaces. Computer-Aided Design, 31(3): 165–173.MATHCrossRefGoogle Scholar
  14. 14.
    M. A. Kulczycka, L. J. Nachman (2000) Qualitative and quantitative comparisons of B-spline offset surface approximation methods. Computer-Aided Design, 34(1):19–26.CrossRefGoogle Scholar
  15. 15.
    J. Seong, G. Elber, M. Kim (2006) Trimming local and global self-intersections in offset curves/surfaces using distance maps, Computer-Aided Design, 38(3):183–193.CrossRefGoogle Scholar
  16. 16.
    B. Bastl, B. Jüttler, J. Kosinka, M. Lavicka (2008) Computing exact rational offsets of quadratic triangular Bezier surface patches, Computer-Aided Design, 40(2):197–209.MATHCrossRefGoogle Scholar
  17. 17.
    G. Frener, T. Tzivanopoulos, P. Rossbacher, M. Hirz, W. Hirschberg (2009) Entwicklung eines CATIA V5 Makros für PVC-Nähte im Karosseriebau, Research Report of the Institute of Automotive Engineering 2009/4, Graz University of Technology.Google Scholar
  18. 18.
    Homepage of CATIA: www.3ds.com, date of access: 2011-11-05.
  19. 19.
    Homepage of CREO (ProEngineer/Wildfire): www.ptc.com, date of access: 2011-11-0.
  20. 20.
    Homepage of NX (UniGraphics): http://www.plm.automation.siemens.com, date of access: 2011-11-05.
  21. 21.
    J. Chakraborty, S.G. Dhande (1977) Kinematics and geometry of planar and spatial cam mechanisms; Wiley Eastern Ltd, ISBN 0-85226-116-0.Google Scholar
  22. 22.
    H. Grabowski (1991) Advanced modeling for CAD-CAM systems, Springer Verlag, Berlin, ISBN 3-540-53943-3.CrossRefGoogle Scholar
  23. 23.
    M. P. Groover, E. W. Zimmers (1984) CAD/CAM, computer-aided design and manufacturing, Prentice-Hall Internat., Englewood Cliffs, NJ, ISBN 0-13-110255-9.Google Scholar
  24. 24.
    M. Munlin, S.S. Makhanov (2011) Iterative Tool Path Optimization for Five-Axis Machines with Optimal Point Intersection, CAD Conference and Exhibition, Taipeh.Google Scholar
  25. 25.
    Geng, Y. Zhang, J.Y.H. Fuh (2011) A Neutral Network based Approach to 5-axis Tool-path Length Estimation for Optical Multicutter Selection, CAD Conference and Exhibition, Taipeh.Google Scholar
  26. 26.
    A. Iwainsky (1990) Computergrafik in CAD-CAMProzessen, Technik Verlag, Berlin, ISBN 3-341-00780-6.Google Scholar

Copyright information

© 3D Display Research Center and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gernot Frener
    • 1
  • Katharina Thum
    • 1
  • Mario Hirz
    • 1
  • Alexander Harrich
    • 1
  1. 1.Institute of Automotive EngineeringGraz University of TechnologyGrazAustria

Personalised recommendations