Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Recent researches based on integral imaging display method

  • 589 Accesses

  • 57 Citations

Abstract

Integral imaging is one of the most feasible directional displays that give different perspectives according to viewing directions. It has inborn characteristics such as viewing angle, resolution, and depth range because of lens array or pinhole array. In this paper, recent integral imaging techniques for improving these features in display are reviewed. New approaches such as integral floating display and two-dimensional three-dimensional (2D/3D) convertible integral imaging method are described as well.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. Wheatstone (1838) Contributions to the physiology of vision.-Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision, Philosophical Transactions of the Royal Society of London, Part II: 371–394

  2. 2.

    J. C. Maxwell (1868) On the cyclide, The Quarterly Journal of Pure and Applied Mathematics. IX: 111–126

  3. 3.

    G. Lippmann (1908) Epreuves reversible donnant la sensation du relief, J. Phys. 7: 821–825

  4. 4.

    W. Hess (1915), Stereoscopic picture, U. S. Patent. 1,128,979

  5. 5.

    C. W. Kanolt (1918), Photographic method and apparatus, U. S. Patent. 1,260,682

  6. 6.

    D. Gabor (1948) A new microscopic principle, Nature. 161: 777–778

  7. 7.

    F. Okano, H. Hoshino, J. Arai, and I. Yuyama (1997) Realtime pickup method for a three-dimensional image based on integral photography, Appl. Opt. 36: 1598–1603

  8. 8.

    B. Lee, J.-H. Park, and S.-W. Min (2006) Three-dimensional display and information processing based on integral imaging, in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. Springer: 333–378, Chap. 12.

  9. 9.

    J.-H. Park, S.-W. Min, S. Jung, and B. Lee (2001) Analysis of viewing parameters for two display method based on integral photography, Appl. Opt. 40: 5217–5232

  10. 10.

    B. Lee, S.-W. Min, and B. Javidi (2002) Theoretical analysis for three-dimensional integral imaging systems with double devices, Appl. Opt., 41: 4856–4865

  11. 11.

    S.-W. Min, J. Hong, and B. Lee (2004) Analysis of an optical depth converter used in a three-dimensional integral imaging system, Appl. Opt. 43: 4539–4549

  12. 12.

    X. Wang and H. Hua (2008) Theoretical analysis for integral imaging performance based on microscanning of a microlens array, Opt. Lett. 33: 449–451

  13. 13.

    F. Okano, J. Arai, and M. Kawakita (2007) Wave optical analysis of integral method for three-dimensional images, Opt. Lett. 32: 364–366

  14. 14.

    M. Kawakita, H. Sasaki, J. Arai, F. Okano, K. Suehiro, Y. Haino, M. Yoshimura, and M. Sato (2008) Geometric analysis of spatial distortion in projection-type integral imaging, Opt. Lett. 33: 684–686

  15. 15.

    S.-W. Min, J. Kim, and B. Lee (2005) New characteristic equation of three-dimensional integral imaging system and its applications, Jpn. J. Appl. Phys. 44: 71–74

  16. 16.

    S.-W. Min, S. Jung, J.-H. Park, and B. Lee (2001) Three-dimensional display system based on computer-generated integral photography, in Stereoscopic Displays and Virtual Reality Systems VIII, A. J. Woods, J. O. Merritt, and S. A. Benton, eds., Proc. SPIE 4297: 187–195

  17. 17.

    J.-S. Jang and B. Javidi (2002) Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics, Opt. Lett. 27: 324–326

  18. 18.

    H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee (2003) Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays, Opt. Express 11: 927–932

  19. 19.

    Y. Wang, J. Osterman, and Y.-Q. Zhang (2002) Video Processing and Communications, ser. Signal Processing Series. Prentice Hall

  20. 20.

    B. Lee, S. Jung, and J.-H. Park (2002) Viewing-angle-enhanced integral imaging by lens switching, Opt. Lett. 27: 818–820

  21. 21.

    J.-S. Jang and B. Javidi (2003) Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor, Appl. Opt. 42: 1996–2002

  22. 22.

    S. Jung, J.-H. Park, H. Choi, and B. Lee (2003) Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching, Appl. Opt. 42: 2513–2520

  23. 23.

    S. Jung, J.-H. Park, H. Choi, and B. Lee (2003) Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement, Opt. Express. 11: 1346–1356

  24. 24.

    Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W, Min, and B. Lee (2004) Viewing-angle-enhanced integral imaging system using a curved lens array, Opt. Express. 12: 421–429

  25. 25.

    Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee (2005) A wide-viewing-angle integral 3D imaging system by curving a screen and a lens array, Appl. Opt. 44: 546–552

  26. 26.

    S.-W. Min, J. Kim, and B. Lee (2004) Wide-viewing projection-type integral imaging system with an embossed screen, Opt. Lett. 29: 2420–2422

  27. 27.

    D.-H. Shin, B. Lee, and E.-S. Kim (2006) Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens, Appl. Opt. 45: 7375–7381

  28. 28.

    R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral (2007) Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system, Opt. Express. 15: 16255–16260

  29. 29.

    G. Park, J. Hong, Y. Kim, and B. Lee (2009) Enhancement of Viewing Angle and Viewing Distance in Integral Imaging by Head Tracking, OSA Technical Digest (CD), Digital Holography and Three-Dimensional Imaging (DH), paper DWB27

  30. 30.

    H. Kim, J. Hahn, and B. Lee (2008) The use of a negative index planoconcave lens array for wide-viewing angle integral imaging, Opt. Express. 16: 21865–21880

  31. 31.

    J.-S. Jang, F. Jin, and B. Javidi (2003) Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields, Opt. Lett. 28: 1421–1423

  32. 32.

    J.-H. Park, S. Jung, H. Choi, and B. Lee (2003) Integral imaging with multiple image planes using a uniaxial crystal plate, Opt. Express. 11: 1862–1875

  33. 33.

    J.-S. Jang and B. Javidi (2003) Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes, Opt. Lett. 28: 1924–1926

  34. 34.

    H. Choi, J.-H. Park, J. Hong, and B. Lee (2004) Depth-enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display, Jpn. J. Appl. Phys. 43: 5330–5336

  35. 35.

    S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee (2004) Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array, J. Soc. Inform. Display. 12: 461–467

  36. 36.

    J. Hong, J.-H. Park, S. Jung and B. Lee (2004) A depth-enhanced integral imaging by use of optical path control, Opt. Lett. 29: 1790–1792

  37. 37.

    H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee (2005) Layered-panel integral imaging without the translucent problem, Opt. Express. 13: 5769–5776

  38. 38.

    Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee (2006) Depth-enhanced three-dimensional integral imaging by use of multilayered display devices, Appl. Opt. 45: 4334–4343

  39. 39.

    Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, B. Lee (2007) Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers, Appl. Opt. 46: 3766–3773

  40. 40.

    A. Castro, Y. Frauel, and B. Javidi (2007) Integral imaging with large depth of field using an asymmetric phase mask, Opt. Express. 15: 10266–10273

  41. 41.

    A. Levin, R. Fergus, F. Durand, and B. Freeman (2007) Image and depth from a conventional camera with a coded aperture, SIGGRAPH 2007

  42. 42.

    A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin (2007) Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture, SIGRRAPH 2007

  43. 43.

    J. Arai, H. Kawai, M. Kawakita, and F. Okano (2008) Depth-control method for integral imaging, Opt. Lett. 33: 279–281

  44. 44.

    J. Hahn, Y. Kim, E.-H. Kim, and B. Lee (2008) Undistorted pickup method of both virtual and real objects for integral imaging, Opt. Express. 16: 13969–13978

  45. 45.

    C. B. Burckhardt (1967) Optimum parameters and resolution limitation of integral photography, J. Opt. Soc. Am. 58: 71–76

  46. 46.

    T. Okoshi (1971) Optimum design and depth resolution of lens-sheet and projection-type three-dimensional displays, Appl. Opt. 10: 2284–2291

  47. 47.

    H. Hoshino, F. Okano, H. Isono, and I. Yuyama (1998) Analysis of resolution limitation of integral photography, J. Opt. Soc. Am. A. 15: 2059–2065

  48. 48.

    J. Arai, M. Okui, T. Yamashita, and F. Okano (2006) Integral three-dimensional television using a 2000-scanning-line video system, Appl. Opt. 45: 1704–1712

  49. 49.

    Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee (2007) Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array, Opt. Express. 15: 18253–18267

  50. 50.

    H. Liao, T. Dohi, M. Iwahara (2007) Improved viewing resolution of integral videography by use of rotated prism sheets, Opt. Express. 15: 4814–4823

  51. 51.

    S. Jung, J.-H. Park, B. Lee, and B. Javidi (2002) Viewing angle enhanced integral 3D imaging using double display devices with masks, Opt. Eng. 41: 2389–2390

  52. 52.

    H. Liao, M. Iwahara, N. Hata, and T. Dohi (2004) High-quality integral videography using a multiprojector, Opt. Express. 12: 1067–1076

  53. 53.

    H. Liao, M. Iwahara, T. Koike, N. Hata, I. Sakuma, and T. Dohi (2005) Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system, Appl. Opt. 44: 305–315

  54. 54.

    J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee (2009) Implementation of polarization-multiplexed tiled projection integral imaging system, J. Soc. Inform. Display. 17: 411–418

  55. 55.

    J. S. Jang, Y. S. Oh, and B. Javidi (2004) Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display, Opt. Express. 12: 557–563

  56. 56.

    F. Okano, J. Arai, K. Mitani, and M. Okui (2006) Real-time integral imaging based on extremely high resolution video system, Proc. IEEE. 94: 490–501

  57. 57.

    Y. Kim, J.-H. Jung, J.-M. Kang, Y. Kim, B. Lee, and B. Javidi (2007) Resolution-enhanced three-dimensional integral imaging using double display devices, LEOS 2007. paper TuW3: 356–357

  58. 58.

    J. Hahn, Y. Kim, and B. Lee (2009) Uniform angular resolution integral imaging display with boundary folding mirrors, Appl. Opt. 48: 504–511

  59. 59.

    J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim (2007) Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images, Appl. Opt. 46: 7697–7708

  60. 60.

    D.-H. Shin, C.-W. Tan, B.-G. Lee, J.-J. Lee, and E.-S. Kim (2008) Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging, Appl. Opt. 47: 6656–6665

  61. 61.

    S.-W. Min, M. Hahn, J. Kim, and B. Lee (2005) Three-dimensional electro-floating display system using an integral imaging method, Opt. Express. 13: 4358–4369

  62. 62.

    J. Kim, S.-W. Min, Y. Kim, and B. Lee (2008) Analysis on viewing characteristics of integral floating system, Appl. Opt. 47: D80–D86

  63. 63.

    J. Kim, S.-W. Min, and B. Lee (2009) Viewing window expansion of integral floating display, Appl. Opt. 48: 862–867

  64. 64.

    J. Kim, S.-W. Min, and B. Lee (2007) Viewing region maximization of an integral floating display through location adjustment of viewing window, Opt. Express. 15: 13023–13034

  65. 65.

    J. Kim, S.-W. Min, and B. Lee (2008) Floated image mapping for integral floating display, Opt. Express. 16: 8549–8556

  66. 66.

    H. Kakeya (2002) Autostereoscopic display with real-image virtual screen and light filters, in Stereoscopic Displays and Virtual Reality Systems IX, A. J. Woods, J. O. Merritt, S. A. Benton, and M. T. Bolas, eds., Proc. SPIE 4660: 349–357

  67. 67.

    H. Kakeya (2003) Real image based autostereoscopic display using LCD, mirrors, and lenses, in Stereoscopic Displays and Virtual Reality Systems X, A. J. Woods, M. T. Bolas, J. O. Merritt, and S. A. Benton, eds., Proc. SPIE 5006: 99–107

  68. 68.

    H. Kakeya, N. Kobe, and H. Kasano (2004) Multiview autostereoscopic display with floating real image, in Stereoscopic Displays and Virtual Reality Systems XI, A. J. Woods, J. O. Merritt, S. A. Benton, and M. T. Bolas, eds., Proc. SPIE 5291: 255–264

  69. 69.

    H. Kakeya (2007) MOEVision: simple multiview display with clear floating image, in Stereoscopic Displays and Virtual Reality Systems XIV, A. J. Woods, N. A. Dodgson, J. O. Merritt, M. T. Bolas, and I. E. McDowall, eds., Proc. SPIE 6490: 64900J

  70. 70.

    H. Kakeya (2008) Formulation of coarse integral imaging and its applications, in Stereoscopic Displays and Virtual Reality Systems XIX, A. J. Woods, N. S. Holliman, and J. O. Merritt, eds., Proc. SPIE 6803: 680317

  71. 71.

    J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee (2004) Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging, Opt. Lett. 29: 2734–2736

  72. 72.

    J.-H. Park, J. Kim, Y. Kim, and B. Lee (2005) Resolution enhanced three-dimensional/two-dimension convertible display based on integral imaging, Opt. Express. 13: 1875–1884

  73. 73.

    H. Choi, S.-W. Cho, J. Kim, and B. Lee (2006) A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer, Opt. Express. 14: 5183–5190

  74. 74.

    S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee (2006) Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging, Opt. Lett. 31: 2852–2854

  75. 75.

    Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee (2007) Three-dimensional integral display using plastic optical fibers, Appl. Opt. 46: 7149–7154

  76. 76.

    Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee (2008) Thin-type integral imaging method with an organic light emitting diode panel, Appl. Opt. 47: 4927–4934

  77. 77.

    H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee (2008) Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel, Appl. Opt. 47: 2207–2214

  78. 78.

    J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee (2009) Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure, Appl. Opt. 48: 998–1007

  79. 79.

    Y. Hirayama, T. Saishu, R. Fukushima, and K. Taira (2006) Flatbed-type auto stereoscopic display systems using integral imaging method, IEEE Int. Conf. Consumer Electronics, 125–126

  80. 80.

    T. Koike, M. Oikawa, K. Utsugi, M. Kobayashi, and M. Yamasaki, (2007) Autostereoscopic display with 60 ray directions using LCD with optimized color filter layout, in Stereoscopic Displays and Virtual Reality Systems XIV, A. J. Woods, N. A. Dodgson, J. O. Merritt, M. T. Bolas, and I. E. McDowall, eds., Proc. SPIE 6490A: 64900T

  81. 81.

    H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, T. Dohi (2004) Surgical navigation by autostereoscopic image overlay of integral videography, IEEE Trans. on Inf. Tech. in Biomedicine, 8: 114–121

  82. 82.

    M. Fuchs, R. Raskar, H.-P. Seidel, and H. P. A. Lensch (2008) Towards passive 6D reflectance field displays, ACM Trans. Graph., 27, 58:1–58:8

Download references

Author information

Correspondence to Byoungho Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, Y., Hong, K. & Lee, B. Recent researches based on integral imaging display method. 3D Res 1, 17–27 (2010). https://doi.org/10.1007/3DRes.01(2010)2

Download citation

Keywords

  • Three-dimensional display
  • integral imaging
  • integral photography