We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Artificial Intelligence and Machine Learning: A New Disruptive Force in Orthopaedics

  • 1 Accesses


Orthopaedics as a surgical discipline requires a combination of good clinical acumen, good surgical skill, a reasonable physical strength and most of all, good understanding of technology. The last few decades have seen rapid adoption of new technologies into orthopaedic practice, power tools, new implants, CAD–CAM design, 3-D printing, additive manufacturing just to name a few. The new disruption in orthopaedics in the current time and era is undoubtedly the advent of artificial intelligence and robotics. As these technologies take root and innovative applications continue to be incorporated into the main-stream orthopedics, as we know it today, it is imperative to look at and understand the basics of artificial intelligence and what work is being done in the field today. This article takes the form of a loosely structured narrative review and will introduce the reader to key concepts in the field of artificial intelligence as well as some of the directions in application of the same in orthopaedics. Some of the recent work has been summarised and we present our viewpoint at the conclusion as to why we must consider artificial intelligence as a disrupting positive influence on orthopaedic surgery.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Artificial intelligence


Deep learning


Machine learning


Convolutional neural network


Artificial neural network


Recurrent neural network


  1. 1.

    Nadella, S. (2016). The partnership of the future, SLATE: June 28 2016. https://slate.com/technology/2016/06/microsoft-ceo-satya-nadella-humans-and-a-i-can-work-together-to-solve-societys-challenges.html. Accessed: 19 Jun 2019.

  2. 2.

    Turing, A. M. (2019). Computing Machinery and Intelligence, Mind, New Series, Vol. 59, No. 236 (Oct., 1950), pp. 433–460 Published by: Oxford University Press on behalf of the Mind Association available at: http://www.jstor.org/stable/2251299. Accessed: 19 Jun 2019.

  3. 3.

    Domingo, P. (2017). The machine learning revolution. In The master algorithm: How the quest for the ultimate learning machine will remake our world (pp. 1–22). UK: Penguin Random House.

  4. 4.

    Woodson, J. (2019). Decades Ago, Pilots Learned to “Fly by Instruments.” Doctors Need to Do the Same [Internet]. Harvard Business Review. 2019 [cited 23 June 2019]. https://hbr.org/2018/03/decades-ago-pilots-learned-to-fly-by-instruments-doctors-need-to-do-the-same.

  5. 5.

    McCarthy, J., Marvin, L., Minsky, M. L., Rochester, N., & Shannon, C. E. (1995). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. August 31, 1955. http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html. Accessed June 23 2019.

  6. 6.

    Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., & Hager, G., et al. (2019). Artificial Intelligence and Life in 2030.”One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel, Stanford University, Stanford, CA, September 2016. http://ai100.stanford.edu/2016-report. Accessed June 23 2019.

  7. 7.

    Hintz A. (2019). Understanding the four types of AI, from reactive robots to self-aware beings [Internet]. The Conversation. 2019 [cited 28 July 2019]. Available from: https://theconversation.com/understanding-the-four-types-of-ai-from-reactive-robots-to-self-aware-beings-67616. Accessed 28 July 2018.

  8. 8.

    Cool vendors in healthcare artificial intelligence. https://www.gartner.com/document/3913322 Accessed June 23 2017

  9. 9.

    González, G. C., Núñez-Valdez, E., García-Díaz, V., Pelayo, G., Bustelo, C., & Cueva-Lovelle, J. (2019). A Review of Artificial Intelligence in the Internet of Things. International Journal of Interactive Multimedia and Artificial Intelligence.,5(4), 9.

  10. 10.

    McCarthy, J. (2019). What is AI? http://jmc.stanford.edu/articles/whatisai/whatisai.pdf. Accessed 23 June 2019.

  11. 11.

    Russel, S. J., & Norvig, P. (2015). Introduction. In Artificial intelligence: A modern approach (3rd ed., pp. 1–3). New Delhi: Pearson India Education Services Pvt Ltd.

  12. 12.

    Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., et al. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology,71(23), 2668–2679.

  13. 13.

    Russel, S. J., & Norvig, P. (2015). Learning from examples. Artificial intelligence: A modern approach (3rd ed., pp. 706–781). New Delhi: Pearson India Education Services Pvt Ltd.

  14. 14.

    Deo, R. C. (2015). Machine learning in medicine. Circulation,132(20), 1920–1930.

  15. 15.

    Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., et al. (2018). NPJ Digit Med.,1, 18.

  16. 16.

    Colton, S., & Mentor, F. R. C. (2007). “The balance filter.” Presentation, Massachusetts Institute of Technology (2007). http://d1.amobbs.com/bbs_upload782111/files_44/ourdev_665531S2JZG6.pdf. Accessed 14 Dec 2019.

  17. 17.

    Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research.,16, 321–357.

  18. 18.

    Mundra, P., & Rajapakse, J. (2010). SVM-RFE with MRMR filter for gene selection. IEEE Transactions on NanoBioscience.,9(1), 31–37.

  19. 19.

    Pai-shun, T., Chun-Chen, T., Pin-Yu, C., Ya-Yun, L., & Shin-Ming, C. (2019). FEAST: An automated feature selection framework for compilation tasks. [Internet]. Arxiv.org. 2016 [cited 28 July 2019]. Available from: https://arxiv.org/pdf/1610.09543.pdf.

  20. 20.

    Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., et al. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology,2(4), 230–243.

  21. 21.

    Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future1big data, machine learning, and clinical medicine. New England Journal of Medicine,375(13), 1216–1219.

  22. 22.

    Reddy, S., Fox, J., & Purohit, M. P. (2019). Artificial intelligence-enabled healthcare delivery. Journal of the Royal Society of Medicine,112(1), 22–28.

  23. 23.

    ‘Software as a medical device (SaMD)”. (2019). https://www.fda.gov/medical-devices/digital-health/software-medical-device-samd. Accessed 28 June 2019.

  24. 24.

    “Artificial Intelligence and machine learning in SaMD”. (2019). https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device. Accessed 28 June 2019.

  25. 25.

    Developing Software Pre-certification program: A Working Model” . (2019). https://www.fda.gov/media/113802/download. Accessed 28 June 2019.

  26. 26.

    Challen, R., Denny, J., Pitt, M., Gompels, L., Edwards, T., & Tsaneva-Atanasova, K. (2019). Artificial intelligence, bias and clinical safety. BMJ Qual Saf,28(3), 231–237.

  27. 27.

    Keikes, L., Medlock, S., van de Berg, D. J., Zhang, S., Guicherit, O. R., Punt, C. J. A., et al. (2018). The first steps in the evaluation of a “black-box” decision support tool: a protocol and feasibility study for the evaluation of Watson for Oncology. Journal Of Clinical and Translational Research,3(Suppl 3), 411–423.

  28. 28.

    Sharma, S., & Seth, U. (2017). Artificial intelligence in cardiology. Journal of the Practice of Cardiovascular Sciences,3(3), 158.

  29. 29.

    Bonderman, D. (2017). Artificial intelligence in cardiology. Wiener Klinische Wochenschrift,129(23–24), 866–868.

  30. 30.

    Tajik, A. J. (2016). machine learning for echocardiographic imaging: embarking on another incredible journey. Journal of the American College of Cardiology,68(21), 2296–2298.

  31. 31.

    Dijkstra, B., Zijlstra, W., Scherder, E., & Kamsma, Y. (2008). Detection of walking periods and number of steps in older adults and patients with Parkinson’s disease: accuracy of a pedometer and an accelerometry-based method. Age and Ageing,37(4), 436–441.

  32. 32.

    Herman, T., Weiss, A., Brozgol, M., Giladi, N., & Hausdorff, J. M. (2014). Gait and balance in Parkinson’s disease subtypes: objective measures and classification considerations. Journal of Neurology,261(12), 2401–2410.

  33. 33.

    Weiss, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2015). New evidence for gait abnormalities among Parkinson’s disease patients who suffer from freezing of gait: insights using a body-fixed sensor worn for 3 days. Journal of Neural Transmission (Vienna),122(3), 403–410.

  34. 34.

    Raknim, P., & Lan, K. C. (2016). Gait monitoring for early neurological disorder detection using sensors in a smartphone: validation and a case study of Parkinsonism. Telemedicine and e-Health,22(1), 75–81.

  35. 35.

    Azuaje, F. (2019). Artificial intelligence for precision oncology: beyond patient stratification. NPJ Precision Oncology,3, 6.

  36. 36.

    Curioni-Fontecedro, A. (2017). A new era of oncology through artificial intelligence. ESMO Open,2(2), e000198.

  37. 37.

    Kim, Y. Y., Oh, S. J., Chun, Y. S., Lee, W. K., & Park, H. K. (2018). Gene expression assay and Watson for Oncology for optimization of treatment in ER-positive, HER2-negative breast cancer. PLoS One,13(7), e0200100.

  38. 38.

    Malin, J. L. (2013). Envisioning Watson as a rapid-learning system for oncology. Journal of Oncology Practice,9(3), 155–157.

  39. 39.

    Choi, Y. I., Chung, J. W., Kim, K. O., Kwon, K. A., Kim, Y. J., Park, D. K., et al. (2019). Concordance rate between clinicians and watson for oncology among patients with advanced gastric cancer: Early, real-world experience in Korea. Canadian Journal of Gastroenterology and Hepatology,2019, 8072928.

  40. 40.

    Berg, H. E. (2017). Will intelligent machine learning revolutionize orthopedic imaging? Acta Orthopaedica,88(6), 577.

  41. 41.

    Olczak, J., Fahlberg, N., Maki, A., Razavian, A. S., Jilert, A., Stark, A., et al. (2017). Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthopaedica,88(6), 581–586.

  42. 42.

    Cabitza, F., Locoro, A., & Banfi, G. (2018). Machine learning in orthopedics: A literature review. Frontiers in Bioengineering and Biotechnology,6, 75.

  43. 43.

    Kim, J. S., Merrill, R. K., Arvind, V., Kaji, D., Pasik, S. D., Nwachukwu, C. C., et al. (2018). Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine (Phila Pa 1976),43(12), 853–860.

  44. 44.

    Paulino Pereira, N. R., Janssen, S. J., van Dijk, E., Harris, M. B., Hornicek, F. J., Ferrone, M. L., et al. (2016). Development of a prognostic survival algorithm for patients with metastatic spine disease. Journal of Bone and Joint Surgery American,98(21), 1767–1776.

  45. 45.

    Jamaludin, A., Lootus, M., Kadir, T., Zisserman, A., Urban, J., Battié, M. C., et al. (2017). ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. European Spine Journal,26(5), 1374–1383.

  46. 46.

    Oh, E., Seo, S. W., Yoon, Y. C., Kim, D. W., Kwon, S., & Yoon, S. (2017). Prediction of pathologic femoral fractures in patients with lung cancer using machine learning algorithms: Comparison of computed tomography-based radiological features with clinical features versus without clinical features. Journal of Orthopaedic Surgery (Hong Kong),25(2), 2309499017716243.

  47. 47.

    Janssen, S. J., van der Heijden, A. S., van Dijke, M., Ready, J. E., Raskin, K. A., Ferrone, M. L., et al. (2015). 2015 Marshall urist young investigator award: Prognostication in patients with long bone metastases: Does a boosting algorithm improve survival estimates? Clinical Orthopaedics and Related Research,473(10), 3112–3121.

  48. 48.

    Thio, Q. C. B. S., Karhade, A. V., Ogink, P. T., Raskin, K. A., De Amorim, Bernstein K., Lozano Calderon, S. A., et al. (2018). Can machine-learning techniques be used for 5-year survival prediction of patients with chondrosarcoma? Clinical Orthopaedics and Related Research,476(10), 2040–2048.

  49. 49.

    Bongers, M. E. R., Thio, Q. C. B. S., Karhade, A. V., Storm, M. L., Raskin, K. A., Lozano Calderon, S. A., et al. (2019). Does the SORG Algorithm predict 5-year survival in patients with chondrosarcoma? An external validation. Clinical Orthopaedics and Related Research, 477, 2296–2303.

  50. 50.

    Piccioli, A., Spinelli, M. S., Forsberg, J. A., Wedin, R., Healey, J. H., Ippolito, V., et al. (2015). How do we estimate survival? External validation of a tool for survival estimation in patients with metastatic bone disease-decision analysis and comparison of three international patient populations. BMC Cancer,22(15), 424.

  51. 51.

    Ogura, K., Gokita, T., Shinoda, Y., Kawano, H., Takagi, T., Ae, K., et al. (2017). Can a multivariate model for survival estimation in skeletal metastases (PATHFx) be externally validated using japanese patients? Clinical Orthopaedics and Related Research,475(9), 2263–2270.

  52. 52.

    Forsberg, J. A., Wedin, R., Boland, P. J., & Healey, J. H. (2017). Can we estimate short- and intermediate-term survival in patients undergoing surgery for metastatic bone disease? Clinical Orthopaedics and Related Research,475(4), 1252–1261.

  53. 53.

    Nandra, R., Parry, M., Forsberg, J., & Grimer, R. (2017). Can a bayesian belief network be used to estimate 1-year survival in patients with bone sarcomas? Clinical Orthopaedics and Related Research,475(6), 1681–1689.

  54. 54.

    Sikka, R. S., Baer, M., Raja, A., Stuart, M., & Tompkins, M. (2019). Analytics in sports medicine: Implications and responsibilities that accompany the era of big data. Journal of Bone and Joint Surgery American,101(3), 276–283.

  55. 55.

    Ashinsky, B. G., Bouhrara, M., Coletta, C. E., Lehallier, B., Urish, K. L., Lin, P. C., et al. (2017). Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. Journal of Orthopaedic Research,35(10), 2243–2250.

  56. 56.

    Schmaranzer, F., Helfenstein, R., Zeng, G., Lerch, T. D., Novais, E. N., Wylie, J. D., et al. (2019). Automatic MRI-based three-dimensional models of hip cartilage provide improved morphologic and biochemical analysis. Clinical Orthopaedics and Related Research,477(5), 1036–1052.

  57. 57.

    Bevevino, A. J., Dickens, J. F., Potter, B. K., Dworak, T., Gordon, W., & Forsberg, J. A. (2014). A model to predict limb salvage in severe combat-related open calcaneus fractures. Clinical Orthopaedics and Related Research,472(10), 3002–3009.

  58. 58.

    Menendez, M. E., Shaker, J., Lawler, S. M., Ring, D., & Jawa, A. (2019). Negative patient-experience comments after total shoulder arthroplasty. Journal of Bone and Joint Surgery American,101(4), 330–337.

  59. 59.

    Fontana, M. A., Lyman, S., Sarker, G. K., Padgett, D. E., & MacLean, C. H. (2019). Can machine learning algorithms predict which patients will achieve minimally clinically important differences from total joint arthroplasty? Clinical Orthopaedics and Related Research,477(6), 1267–1279.

  60. 60.

    Harris, A. H. S., Kuo, A. C., Weng, Y., Trickey, A. W., Bowe, T., & Giori, N. J. (2019). Can machine learning methods produce accurate and easy-to-use prediction models of 30-day complications and mortality after knee or hip arthroplasty? Clinical Orthopaedics and Related Research,477(2), 452–460.

  61. 61.

    Harris, A. H., Kuo, A. C., Bowe, T., Gupta, S., Nordin, D., & Giori, N. J. (2018). Prediction models for 30-day mortality and complications after total knee and hip arthroplasties for veteran health administration patients with osteoarthritis. Journal of Arthroplasty,33(5), 1539–1545.

  62. 62.

    Ramkumar, P. N., Navarro, S. M., Haeberle, H. S., Karnuta, J. M., Mont, M. A., Iannotti, J. P., et al. (2019). Development and validation of a machine learning algorithm after primary total hip arthroplasty: Applications to length of stay and payment models. Journal of Arthroplasty,34(4), 632–637.

  63. 63.

    Navarro, S. M., Wang, E. Y., Haeberle, H. S., Mont, M. A., Krebs, V. E., Patterson, B. M., et al. (2018). Machine learning and primary total knee arthroplasty: Patient forecasting for a patient-specific payment model. Journal of Arthroplasty,33(12), 3617–3623.

  64. 64.

    Ramkumar, P. N., Haeberle, H. S., Bloomfield, M. R., Schaffer, J. L., Kamath, A. F., Patterson, B. M., et al. (2019). Artificial intelligence and arthroplasty at a single institution: Real-world applications of machine learning to big data, value-based care, mobile health, and remote patient monitoring. The Journal of Arthroplasty. https://doi.org/10.1016/j.arth.2019.06.018.

  65. 65.

    Cilla, M., Borgiani, E., Martínez, J., Duda, G. N., & Checa, S. (2017). Machine learning techniques for the optimization of joint replacements: Application to a short-stem hip implant. PLoS One,12(9), e0183755.

  66. 66.

    Stojadinovic, A., Kyle Potter, B., Eberhardt, J., Shawen, S. B., Andersen, R. C., Forsberg, J. A., et al. (2011). Development of a prognostic naive bayesian classifier for successful treatment of nonunions. Journal of Bone and Joint Surgery. American Volume,93(2), 187–194.

  67. 67.

    Begg, R., & Kamruzzaman, J. (2005). A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. Journal of Biomechanics,38(3), 401–408.

  68. 68.

    Joyseeree, R., Abou Sabha, R., & Mueller, H. (2015). Applying machine learning to gait analysis data for disease identification. Studies in Health Technology and Informatics,210, 850–854.

  69. 69.

    Sayed, M. (2018). Biometric gait recognition based on machine learning algorithms. Journal of Computer Science.,14(7), 1064–1073.

  70. 70.

    Parsley, B. S. (2018). Robotics in orthopedics: A brave new world. Journal of Arthroplasty,33(8), 2355–2357.

  71. 71.

    Levy, J. C. (2019). Don’t lose sight of the outcome: Commentary on an article by Mariano E. Menendez, MD, et al.: “Negative Patient-Experience Comments After Total Shoulder Arthroplasty”. J Bone Joint Surg Am.,101(4), e15.

  72. 72.

    Trends emerge in the Gartner Hype cycle for emerging technologies. (2018). https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/. Accessed 21 July 2018.

  73. 73.

    Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? Journal of Arthroplasty,33(8), 2358–2361.

  74. 74.

    Froimson, M. I. (2018). Digital Health and advanced technology in arthroplasty. Journal of Arthroplasty,33(8), 2344.

  75. 75.

    Loh, E. (2018). Medicine and the rise of the robots: a qualitative review of recent advances of artificial intelligence in health. BMJ Leader,2(2), 59–63.

  76. 76.

    Jones, L. D., Golan, D., Hanna, S. A., & Ramachandran, M. (2018). Artificial intelligence, machine learning and the evolution of healthcare: A bright future or cause for concern? Bone Joint Res.,7(3), 223–225.

Download references

Author information

Concepts: MP, AG, SM, VB, and AS. Design: MP, AG, SM, VB, and AS. Definition of intellectual content: MP, AG, SM, VB, and AS. Literature search: MP, AG, SM, VB, and AS. Clinical studies: MP, AG, SM, VB, and AS. Experimental studies: not available. Data acquisition: none. Data analysis: none. Statistical analysis: not available. Manuscript preparation: MP, AG, SM, VB, and AS. Manuscript editing: MP, AG, SM, VB, and AS. Manuscript review: MP, AG, SM, VB, and AS. Guarantor: MP, AG, SM, VB, and AS.

Correspondence to Murali Poduval.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests in relation to the content published here which is entirely educative and informative.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poduval, M., Ghose, A., Manchanda, S. et al. Artificial Intelligence and Machine Learning: A New Disruptive Force in Orthopaedics. IJOO (2020). https://doi.org/10.1007/s43465-019-00023-3

Download citation


  • Artificial intelligence
  • Orthopaedic surgery
  • Machine learning