Limb Salvage Using Liquid Nitrogen-Treated Tumour-Bearing Autograft: A Single Institutional Experience of 10 Patients

  • Sudhir Kumar GargEmail author
  • Purnima Aggarwal
  • Jagandeep Virk
  • R. P. S. Punia
  • Kislay Dimri
  • Rohit Jindal
Original Article



Many reconstruction methods have evolved to offer limb salvage surgery (LSS) to patients with musculoskeletal sarcomas. It can be achieved using endoprosthesis or biological reconstruction methods like allograft or autograft or a combination of both. In carefully selected patients, resected bone can be recycled and reimplanted after sterilisation using methods like irradiation, autoclaving, pasteurisation or liquid nitrogen.


From 2010 to 2016, 10 patients with primary musculoskeletal sarcoma underwent limb salvage surgery (LSS) by wide resection of the tumour and reconstruction using recycled autograft treated with liquid nitrogen. Intercalary resection was carried out in six patients and intra-articular in four. The resected bone was dipped in liquid nitrogen for 25 min, thawed at room temperature for 15 min followed by dipping in vancomycin-mixed saline for 10 min. The recycled bone was re-implanted into its original site and stabilised with internal fixation.


At a mean follow-up period of 39.6 months (range 6–97 months), all patients had a good function (mean functional score of 80%) with no evidence of local recurrence in the re-implanted bone or otherwise. Union was achieved at 15 of the 16 osteotomy sites with a mean union time of 5.2 months (range 4–7 months) without any additional surgical interventions. In none of the patient, augmentation with vascularised/non-vascularised fibula was done. No complication like fracture of the autograft, implant failure or deep/superficial infection was reported in any patient.


Recycled tumour-bearing autograft after treatment with liquid nitrogen is an anatomical, cost-effective, relatively simpler and reliable technique for reconstruction of bone defect after resection in selective primary musculoskeletal sarcoma patients.


Recycled autograft Liquid nitrogen Sarcoma 


Authors’ Contribution

SKG: designed the study, chief surgeon in all the cases, contributed in editing and proof reading the manuscript; PA: radiologist in all cases and carried out imaging studies. Contributed in writing the manuscript; JV: contributed in data collection, literature review and drafting of manuscript; RPSP: pathologist in all cases. Contributed in editing and proof reading the manuscript; KD: oncologist in all cases. Contributed in editing and proof reading the manuscript; RJ: contributed in editing and proof reading the manuscript.



Compliance with Ethical Standards

Conflict of Interest

There are no financial or other relationships that might lead to a conflict of interest.

Informed Consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.


  1. 1.
    Rougraff, B. T., Simon, M. A., Kneisl, J. S., Greenberg, D. B., & Mankin, H. J. (1994). Limb salvage compared with amputation for osteosarcoma of the distal end of the femur A long-term oncological, functional, and quality-of-life study. The Journal of Bone and Joint Surgery,76(5), 649–656.PubMedCrossRefGoogle Scholar
  2. 2.
    Kawai, A., Muschler, G. F., Lane, J. M., Otis, J. C., & Healy, J. H. (1998). Prosthetic knee replacement after resection of a malignant tumour of the distal part of the femur: medium to long term results. The Journal of Bone and Joint Surgery,80, 636–647.PubMedCrossRefGoogle Scholar
  3. 3.
    Kumar, D., Grimer, R. J., Abudu, A., Carter, S. R., & Tillman, R. M. (2003). Endoprosthetic replacement of the proximal humerus: long-term results. The Journal of Bone and Joint Surgery,85, 717–722.PubMedCrossRefGoogle Scholar
  4. 4.
    Kinkel, S., Lehner, B., Kleinhans, J. A., Jakubowitz, E., Ewerbeck, V., & Heisel, C. (2010). Medium to long-term results after reconstruction of bone defects at the knee with tumour endoprosthesis. Journal of Surgical Oncology,101, 166–169.PubMedGoogle Scholar
  5. 5.
    Renard, A. J., Veth, R. P., Schreuder, H. W., Van Loon, C. J., Koops, H. S., & Van Horn, J. R. (2000). Function and complications after ablative and limb-salvage therapy in lower extremity sarcoma of bone. Journal of Surgical Oncology,73(4), 198–205.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Grimer, R. J., Carter, S. R., Tillman, R. M., Sneath, R. S., Walker, P. S., Unwin, P. S., et al. (1999). Endoprosthetic replacement of the proximal tibia. The Journal of Bone and Joint Surgery,81, 488–494.PubMedCrossRefGoogle Scholar
  7. 7.
    Natarajan, M. V., Annamalai, K., Williams, S., Selvaraj, R., & Rajagopal, T. S. (2000). Limb salvage in distal tibial osteosarcoma using a custom megaprosthesis. International Orthopaedics,24, 282–284.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Aponte-Tinao, L., Ayerza, M. A., Muscolo, D. L., & Farfalli, G. L. (2015). Survival, recurrence, and function after epiphyseal preservation and allograft reconstruction in osteosarcoma of the knee. Clinical Orthopaedics and Related Research,473, 1789–1796.PubMedCrossRefGoogle Scholar
  9. 9.
    Matejovsky, Z., Jr., & Kofranek, I. (2006). Massive allografts in tumour surgery. International Orthopaedics,30, 478–483.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mnaymneh, W., Malinin, T. I., Makley, J. T., & Dick, H. M. (1985). Massive osteoarticular allografts in the reconstruction of extremities following resection of tumors not requiring chemotherapy and radiation. Clinical Orthopaedics and Related Research,197, 76–87.Google Scholar
  11. 11.
    Tomford, W. W. (1995). Transmission of disease through transplantation of musculoskeletal allografts. The Journal of Bone and Joint Surgery,77, 1742–1754.PubMedCrossRefGoogle Scholar
  12. 12.
    Lenze, U., Kasal, S., Hefti, F., & Krieg, A. H. (2017). Non-vascularised fibula grafts for reconstruction of segmental and hemicortical bone defects following meta-/diaphyseal tumour resection at the extremities. BMC Musculoskeletal Disorders,18(1), 289.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    El-Gammal, T. A., El-Sayed, A., & Kotb, M. M. (2003). Reconstruction of lower limb bone defects after sarcoma resection in children and adolescents using free vascularized fibular transfer. Journal of Pediatric Orthopedics. Part B,12(4), 233–243.PubMedGoogle Scholar
  14. 14.
    Nathan, S. S., Hung-Yi, L., Disa, J. J., Athanasian, E., Boland, P., Cordeiro, P. G., et al. (2005). Ankle instability after vascularized fibular harvest for tumor reconstruction. Annals of Surgical Oncology,12(1), 57–64.PubMedCrossRefGoogle Scholar
  15. 15.
    Bodde, E. W., de Visser, E., Duysens, J. E., & Hartman, E. H. (2003). Donor-site morbidity after free vascularized autogenous fibular transfer: subjective and quantitative analyses. Plastic and Reconstructive Surgery,111(7), 2237–2242.PubMedCrossRefGoogle Scholar
  16. 16.
    Arai, K., Toh, S., Tsubo, K., Nishikawa, S., Narita, S., & Miura, H. (2002). Complications of vascularized fibula graft for reconstruction of long bones. Plastic and Reconstructive Surgery,109(7), 2301–2306.PubMedCrossRefGoogle Scholar
  17. 17.
    Yamamoto, N., Tsuchiya, H., & Tomita, K. (2003). Effects of liquid nitrogen treatment on the proliferation of osteosarcoma and the biomechanical properties of normal bone. Journal of Orthopaedic Science,8(3), 374–380.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim, J. D., Lee, G. W., & Chung, S. H. (2011). A reconstruction with extracorporeal irradiated autograft in osteosarcoma around the knee. Journal of Surgical Oncology,104(2), 187–191.PubMedCrossRefGoogle Scholar
  19. 19.
    Puri, A., Gulia, A., Jambhekar, N., & Laskar, S. (2012). The outcome of the treatment of diaphyseal primary bone sarcoma by resection, irradiation and re-implantation of the host bone. The Journal of Bone and Joint Surgery,94(7), 982–988.PubMedCrossRefGoogle Scholar
  20. 20.
    Khattak, M. J., Umer, M., & Haroon-ur-Rasheed, U. M. (2006). Autoclaved tumor bone for reconstruction: an alternative in developing countries. Clinical Orthopaedics and Related Research,447, 138–144.PubMedCrossRefGoogle Scholar
  21. 21.
    Jeon, D. G., Kim, M. S., Cho, W. H., Song, W. S., & Lee, S. Y. (2007). Pasteurized autograft for intercalary reconstruction: an alternative to allograft. Clinical Orthopaedics and Related Research,456, 203–210.PubMedCrossRefGoogle Scholar
  22. 22.
    Takata, M., Sugimoto, N., Yamamoto, N., Shirai, T., Hayashi, K., Nishida, H., et al. (2011). Activity of bone morphogenetic protein-7 after treatment at various temperatures: freezing vs. pasteurization vs. allograft. Cryobiology,63, 235–239.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsuchiya, H., Wan, S. L., Sakayama, K., Yamamoto, N., Nishida, H., & Tomita, K. (2005). Reconstruction using an autograft containing tumour treated by liquid nitrogen. The Journal of Bone and Joint Surgery,87, 218–225.PubMedCrossRefGoogle Scholar
  24. 24.
    Kawaguchi, N., Matsumoto, S., & Manabe, J. (1995). New method of evaluating the surgical margin and safety margin for musculoskeletal sarcoma, analysed on the basis of 457 surgical cases. Journal of Cancer Research and Clinical Oncology,121, 555–563.PubMedCrossRefGoogle Scholar
  25. 25.
    Hsu, R. W., Wood, M. B., Sim, F. H., & Chao, E. Y. (1997). Free vascularised fibular grafting for reconstruction after tumour resection. The Journal of Bone and Joint Surgery,79(1), 36–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Enneking, W. F., Dunham, W., Gebhardt, M. C., Malawar, M., & Pritchard, D. J. (1993). A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clinical Orthopaedics and Related Research,286, 241–246.Google Scholar
  27. 27.
    Gage, A. A., Greene, G. W., Jr., Neiders, M. E., & Emmings, F. G. (1966). Freezing bone without excision. An experimental study of bone-cell destruction and manner of regrowth in dogs. JAMA,196, 770–774.PubMedCrossRefGoogle Scholar
  28. 28.
    Marciani, R. D., Giansanti, J. S., & Massey, G. B. (1976). Reimplantation of freeze-treated and saline-treated mandibular bone. Journal of Oral Surgery,34, 314–319.PubMedGoogle Scholar
  29. 29.
    Marcove, R. C., & Miller, T. R. (1969). Treatment of primary and metastatic bone tumors by cryosurgery. JAMA,207, 1890–1894.PubMedCrossRefGoogle Scholar
  30. 30.
    Marcove, R. C., Zahr, K. A., Huvos, A. G., & Ogihara, W. (1984). Cryosurgery in osteogenic sarcoma: report of three cases. Comprehensive Therapy,10, 52–60.PubMedGoogle Scholar
  31. 31.
    Kimura, T., Kojima, Y., & Nakagawara, G. (1996). Current status of cryopreservation of pancreatic islets. Low Temp Med,22, 1–6. (in Japanese).Google Scholar
  32. 32.
    Uedaira, H. (1977). Dynamic states of water in biological systems under low temperature. Low Temp Med,3, 87–89. (in Japanese).Google Scholar
  33. 33.
    Goldstein, R. S., & Hess, P. W. (1977). Cryosurgical treatment of cancer. Veterinary Clinics of North America,7, 51–64.PubMedCrossRefGoogle Scholar
  34. 34.
    Tsuchiya, H., Abdel-Wanis, M. E., & Tomita, K. (2006). Biological reconstruction after excision of juxta-articular osteosarcoma around the knee: a new classification system. Anticancer Research,26, 447–453.PubMedGoogle Scholar
  35. 35.
    Tanzawa, Y., Tsuchiya, H., Shirai, T., Hayashi, K., Yo, Z., & Tomita, K. (2009). Histological examination of frozen autograft treated by liquid nitrogen removed after implantation. Journal of Orthopaedic Science,14(6), 761–768.PubMedCrossRefGoogle Scholar
  36. 36.
    Benedetti, M. G., Bonatti, E., Malfitano, C., & Donati, D. (2013). Comparison of allograft-prosthetic composite reconstruction and modular prosthetic replacement in proximal femur bone tumors: functional assessment by gait analysis in 20 patients. Acta Orthopaedica,84(2), 218–223.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Marcove, R. C., Weis, L. D., Vaghaiwalla, M. R., Pearson, R., & Huvos, A. G. (1978). Cryosurgery in the treatment of giant cell tumors of bone. A report of 52 consecutive cases. Cancer,41, 957–969.PubMedCrossRefGoogle Scholar
  38. 38.
    Rahman, M. A., Bassiony, A., & Shalaby, H. (2009). Reimplantation of the resected tumour-bearing segment after recycling using liquid nitrogen for osteosarcoma. International Orthopaedics,33(5), 1365–1370.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Capanna, R., Campanacci, D. A., Belot, N., Beltrami, G., Manfrini, M., Innocenti, M., et al. (2007). A new reconstructive technique for intercalary defects of long bones: the association of massive allograft with vascularized fibular autograft. Long-term results and comparison with alternative techniques. Orthopedic Clinics of North America,38(1), 51–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Houdek, M. T., Wagner, E. R., Stans, A. A., Shin, A. Y., Bishop, A. T., Sim, F. H., et al. (2016). What is the outcome of allograft and intramedullary free fibula (Capanna technique) in pediatric and adolescent patients with bone tumors? Clinical Orthopaedics and Related Research,474, 660–668.PubMedCrossRefGoogle Scholar
  41. 41.
    Drylie, D. M., Jordan, W. P., & Robbins, J. B. (1968). Immunologic consequences of cryosurgery. Investigative Urology,5, 619–626.PubMedGoogle Scholar
  42. 42.
    Joosten, J. J., Muijen, G. N., Wobbes, T., & Ruers, T. J. (2001). In vivo destruction of tumor tissue by cryoblation can induce inhibition of secondary tumor growth: an experimental study. Cryobiology,42, 49–58.PubMedCrossRefGoogle Scholar
  43. 43.
    Joosten, J. J., Muijen, G. N., Wobbes, T., & Ruers, T. J. (2003). Cryosurgery of tumor tissue causes endotoxin tolerance through an inflammatory response. Anticancer Research,23, 427–432.PubMedGoogle Scholar

Copyright information

© Indian Orthopaedics Association 2020

Authors and Affiliations

  • Sudhir Kumar Garg
    • 1
    Email author
  • Purnima Aggarwal
    • 2
  • Jagandeep Virk
    • 1
  • R. P. S. Punia
    • 3
  • Kislay Dimri
    • 4
  • Rohit Jindal
    • 1
  1. 1.Department of OrthopaedicsGovernment Medical College HospitalChandigarhIndia
  2. 2.Department of RadiodiagnosisGovernment Medical College HospitalChandigarhIndia
  3. 3.Department of PathologyGovernment Medical College HospitalChandigarhIndia
  4. 4.Department of Radiation OncologyGovernment Medical College HospitalChandigarhIndia

Personalised recommendations