Advertisement

Mycophenolate mofetil attenuates concanavalin A-induced acute liver injury through modulation of TLR4/NF-κB and Nrf2/HO-1 pathways

  • Marwa S. Serrya
  • Marwa S. ZaghloulEmail author
Article
  • 1 Downloads

Abstract

Background

Acute liver injury (ALI) is a serious health condition associated with rising morbidity and sudden progression. This study was designed to investigate the possible hepatocurative potential of two dose levels (30 and 60 mg/kg) of Mycophenolate mofetil (MMF), an immune-suppressant agent, against Concanavalin A (Con A)-induced ALI in mice.

Method

A single dose of Con A (20 mg/kg, IV) was used to induce ALI in mice. MMF (30 mg/kg and 60 mg/kg) was administered orally for 4 days post Con A injection.

Results

MMF (30 mg/kg) failed to cause significant amelioration in Con A-induced ALI while MMF (60 mg/kg) significantly alleviated Con A-induced ALI. Administration of MMF (60 mg/kg) significantly decreased Con A-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Additionally, MMF significantly restored the disrupted oxidant/antioxidants status induced by Con A. MMF caused marked increase in hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) levels. Moreover, MMF significantly reduced Con A-induced increase in the expression of hepatic toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ) and interleukin-1β (Il-1β). Also, MMF administration significantly decreased Con A-induced increase in the immune-expression of pro-apoptotic Bcl-2-associated X protein (Bax) and markedly increased Con A-induced decrease in the anti-apoptotic B-cell lymphoma 2 protein (Bcl2).

Conclusion

The observed ameliorative effect of MMF against Con A-induce ALI may be contributed to its anti-inflammatory, anti-oxidant and anti-apoptotic potentials taking into consideration that TLR4/NF-κB and Nrf2/HO-1 are the main implicated pathways.

Graphic abstract

Schematic diagram summarizing the possible mechanisms underlying the ameliorative potential of Mycophenolate Mofetil against Con A-induced acute liver injury. Bax Bcl-2-associated X protein, Bcl2 B-cell lymphoma 2, MMF Mycophenolate mofetil, Con A Concanavalin A, GSH reduced glutathione, HO-1 Heme oxygenase-1, IL-1β Interleukin-1β, IFN-γ Interferon-γ, MDA Malondialdehyde, NF-κB Nuclear Factor Kappa B, Nrf2 Nuclear factor erythroid 2-related factor 2, NO Nitric Oxide, SOD Superoxide Dismutase, TLR4 Toll-like receptor 4, TNF-α tumor necrosis factor-α

Keywords

Mycophenolate mofetil Con A TLR4 NF-κB Nrf2 HO-1 Bax and Bcl2 

Abbreviations

ALI

Acute liver injury

ALT

Alanine aminotransferase

AST

Aspartate aminotransferase

Bax

Bcl-2-associated X protein

Bcl2

B-cell lymphoma 2.

Con A

Concanavalin A

GSH

Reduced glutathione

HO-1

Heme oxygenase-1

H&E

Hematoxylin and eosin

IHC

Immunohistochemical.

IL-1β

Interleukin-1β

IFN-γ

Interferon-γ

MDA

Malondialdehyde

MMF

Mycophenolate mofetil

NF-κB

Nuclear factor kappa B

Nrf2

Nuclear factor erythroid 2-related factor 2

NO

Nitric oxide

SOD

Superoxide dismutase

TLR4

Toll-like receptor 4

TNF-α

Tumor necrosis factor-α

Notes

Author contributions

All authors are equally contributed to all aspects of the study.

Compliance with ethical standards

Conflict of Interest

No conflict of interest.

References

  1. 1.
    Wang C, Xia Y, Zheng Y, Dai W, Wang F, Chen K, Li J, Li S, Zhu R, Yang J, Yin Q. Protective effects of N-acetylcysteine in concanavalin A-induced hepatitis in mice. Mediat Inflamm. 2015;2015:189785.Google Scholar
  2. 2.
    Zhou Y, Dai W, Lin C, Wang F, He L, Shen M, Chen P, Wang C, Lu J, Xu L, Xu X. Protective effects of necrostatin-1 against concanavalin A-induced acute hepatic injury in mice. Mediat Inflamm. 2013;2013:706156.Google Scholar
  3. 3.
    Heneghan MA, Yeoman AD, Verma S, Smith AD, Longhi MS. Autoimmune hepatitis. Lancet (Lond Engl). 2013;382(9902):1433–44.CrossRefGoogle Scholar
  4. 4.
    Wang Q, Yang F, Miao Q, Krawitt EL, Gershwin ME, Ma X. The clinical phenotypes of autoimmune hepatitis: a comprehensive review. J Autoimmun. 2016;66:98–107.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Rani R, Tandon A, Wang J, Kumar S, Gandhi CR. Stellate cells orchestrate concanavalin a-induced acute liver damage. Am J Pathol. 2017;187(9):2008–199.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wu Z, Han M, Chen T, Yan W, Ning Q. Acute liver failure: mechanisms of immune-mediated liver injury. Liver Int. 2010;30(6):782–94.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Harvey SA, Dangi A, Tandon A, Gandhi CR. The transcriptomic response of rat hepatic stellate cells to endotoxin: implications for hepatic inflammation and immune regulation. PLoS ONE. 2013;8(12):e82159.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dangi A, Sumpter TL, Kimura S, Stolz DB, Murase N, Raimondi G, Vodovotz Y, Huang C, Thomson AW, Gandhi CR. Selective expansion of allogeneic regulatory T cells by hepatic stellate cells: role of endotoxin and implications for allograft tolerance. J Immunol. 2012;188(8):3667–77.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sumpter TL, Dangi A, Matta BM, Huang C, Stolz DB, Vodovotz Y, Thomson AW, Gandhi CR. Hepatic stellate cells undermine the allostimulatory function of liver myeloid dendritic cells via STAT3-dependent induction of IDO. J Immunol. 2012;189(8):3848–58.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Tiegs G, Hentschel J, Wendel A. AT cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest. 1992;90(1):196–203.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest. 1992;90(1):196–203.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Tiegs G. Cellular and cytokine-mediated mechanisms of inflammation and its modulation in immune-mediated liver injury. Gastroenterol. 2007;45(1):63–70.Google Scholar
  13. 13.
    Varthaman A, Khallou-Laschet J, Clement M, Fornasa G, Kim H-J, Gaston A-T, et al. Control of T cell reactivation by regulatory Qa-1–restricted CD8+ T cells. J Immunol. 2010;184(12):6585–91.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Fang X, Wang R, Ma J, Ding Y, Shang W, Sun Z. Ameliorated ConA-induced hepatitis in the absence of PKC-theta. PLoS ONE. 2012;7(2):e31174.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Higashimoto M, Sakai Y, Takamura M, Usui S, Nasti A, Yoshida K, et al. Adipose tissue derived stromal stem cell therapy in murine C on A-derived hepatitis is dependent on myeloid-lineage and CD 4+ T-cell suppression. Eur J Immunol. 2013;43(11):2956–68.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Harboe E, Gøransson L, Wildhagen K, Omdal R. Mycophenolate mofetil–a new therapeutic agent for chronic autoimmune diseases. Tidsskr Nor Laegeforen. 2005;125(12):1650–2.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus. 2005;14(Suppl 1):s2–8.CrossRefGoogle Scholar
  18. 18.
    Ferjani H, El Arem A, Bouraoui A, Achour A, Abid S, Bacha H, et al. Protective effect of mycophenolate mofetil against nephrotoxicity and hepatotoxicity induced by tacrolimus in Wistar rats. J Physiol Biochem. 2016;72(2):133–44.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lim EJ, Chin R, Nachbur U, Silke J, Jia Z, Angus PW, Torresi J. Effect of immunosuppressive agents on hepatocyte apoptosis post-liver transplantation. PLoS ONE. 2015;10(9):e0138522.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wang W, Guo H, Li H, Yan Y, Wu C, Wang X, He X, Zhao N. Interleukin-35 gene-modified mesenchymal stem cells protect concanavalin A-induced fulminant hepatitis by decreasing the interferon gamma level. Hum Gene Ther. 2018;29(2):234–41.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Huang SW, Chen H, Lu ML, Wang JL, Xie RL, Zhao B, Chen Y, Xu ZW, Fei J, Mao EQ, Chen EZ. Mycophenolate mofetil protects septic mice via the dual inhibition of inflammatory cytokines and PD-1. Inflammation. 2018;41(3):1008–200.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Siddique YH, Ara G, Afzal M. Estimation of lipid peroxidation induced by hydrogen peroxide in cultured human lymphocytes. Dose-Response. 2012;10(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582(1):67–78.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–74.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Guesdon J-L, Ternynck T, Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem. 1979;27(8):1131–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Adams E, Green J, Clark A, Youngson J. Comparison of different scoring systems for immunohistochemical staining. J Clin Pathol. 1999;52(1):75–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Tang H-H, Li H-L, Li Y-X, You Y, Guan Y-Y, Zhang S-L, et al. Protective effects of a traditional Chinese herbal formula Jiang-Xian HuGan on concanavalin A-induced mouse hepatitis via NF-κB and Nrf2 signaling pathways. J Ethnopharmacol. 2018;217:118–25.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Jin L, Fu X, Yao S, Yang J, Ning G, Zhang Z. Protective effects of protopanaxatriol on acute liver injury induced by concanavalin A. Naunyn Schmiedebergs. Arch Pharmacol. 2019;392(1):81–7.CrossRefGoogle Scholar
  29. 29.
    Tu C, Han B, Liu H, Zhang S. Curcumin protects mice against concanavalin A-induced hepatitis by inhibiting intrahepatic intercellular adhesion molecule-1 (ICAM-1) and CXCL10 expression. Mol Cell Biochem. 2011;358(1–2):53–60.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yang YF, Tan DM, Xie YT, Zhao W, Hou ZH, Zhong YD. Mycophenolate mofetil prevents lethal acute liver failure in mice induced by bacille Calmette-Guérin and lipopolysaccharide. J Gastroenterol Hepatol. 2008;23(4):611–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Liew FY, Xu D, Brint EK, O'Neill LA. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol. 2005;5(6):446.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.CrossRefGoogle Scholar
  33. 33.
    Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology. 2006;130(6):1886–900.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187:2626–31.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Liu H, Chen K, Feng W, Wu X, Li H. TLR4-MyD88/Mal-NF-kB axis is involved in infection of HSV-2 in human cervical epithelial cells. PLoS ONE. 2013;8(11):e80327.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Cao Q, Chen F, Li J, Wu S, Wang J, Chen Z. A microarray analysis of early activated pathways in concanavalin A-induced hepatitis. J Zhejiang Univ Sci B. 2010;11(5):366–77.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ojiro K, Ebinuma H, Nakamoto N, Wakabayashi K, Mikami Y, Ono Y, et al. MyD88-dependent pathway accelerates the liver damage of Concanavalin A-induced hepatitis. Biochem Biophys Res Commun. 2010;399(4):744–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen Y, Sun R. Toll-like receptors in acute liver injury and regeneration. Int Immunopharmacol. 2011;11(10):1433–41.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Li T, Yu J, Chen R, Wu J, Fei J, Bo Q, et al. Mycophenolate mofetil attenuates myocardial ischemia–reperfusion injury via regulation of the TLR4/NF-B signaling pathway. Pharmazie Int J Pharm Sci. 2014;69(11):850–5.Google Scholar
  40. 40.
    Sun B, Karin M. NF-κB signaling, liver disease and hepatoprotective agents. Oncogene. 2008;27(48):6228.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Xue J, Chen F, Wang J, Wu S, Zheng M, Zhu H, et al. Emodin protects against concanavalin A-induced hepatitis in mice through inhibiting activation of the p38 MAPK-NF-κB signaling pathway. Cell Physiol Biochem. 2015;35(4):1557–700.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chen J, Sun X, Xia T, Mao Q, Zhong L. Pretreatment with dihydroquercetin, a dietary flavonoid, protected against concanavalin A-induced immunological hepatic injury in mice and TNF-α/ActD-induced apoptosis in HepG2 cells. Food funct. 2018;9(4):2341–52.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Gantner F, Leist M, Lohse AW, Germann PG, Tiegs G. Concanavalin A—induced T-cell—mediated hepatic injury in mice: the role of tumor necrosis factor. Hepatology. 1995;21(1):190–8.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Mizuhara H, O'Neill E, Seki N, Ogawa T, Kusunoki C, Otsuka K, Satoh S, Niwa M, Senoh H, Fujiwara H. T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6. J Exp Med. 1994;179(5):1529–37.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Cui K, Yan G, Xu C, Chen Y, Wang J, Zhou R, Bai L, Lian Z, Wei H, Sun R, Tian Z. Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1β in mice. J Hepatol. 2015;62(6):1311–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Liu D, Zhang X, Jiang L, Guo Y, Zheng C. Epigallocatechin-3-gallate (EGCG) attenuates concanavalin A-induced hepatic injury in mice. Acta Histochem. 2014;116(4):654–62.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Liu T, Xia Y, Li J, Li S, Feng J, Wu L, Zhang R, Xu S, Cheng K, Zhou Y, Zhou S. Shikonin attenuates concanavalin A-induced acute liver injury in mice via inhibition of the JNK pathway. Mediators Inflamm. 2016.  https://doi.org/10.1155/2016/2748367.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kim MY, Lim YY, Kim HM, Park YM, Kang H, Kim BJ. Synergistic inhibition of tumor necrosis factor-alpha-stimulated pro-inflammatory cytokine expression in HaCaT cells by a combination of rapamycin and mycophenolic acid. Ann Dermatol. 2015;27(1):32–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Slight-Webb S, Guthridge JM, Chakravarty EF, Chen H, Lu R, Macwana S, Bean K, Maecker HT, Utz PJ, James JA. Mycophenolate mofetil reduces STAT3 phosphorylation in systemic lupus erythematosus patients. JCI insight. 2019;4(2):124575.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Moes A, Severs D, Verdonk K, van der Lubbe N, Zietse R, Danser AH, Hoorn EJ. Mycophenolate mofetil attenuates DOCA-salt hypertension: effects on vascular tone. Front Physiol. 2018;9:578.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Paracha UZ, Fatima K, Alqahtani M, Chaudhary A, Abuzenadah A, Damanhouri G, et al. Oxidative stress and hepatitis C virus. Virol J. 2013;10(1):251.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cichoż-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 2014;20(25):8082.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Shirin H, Aeed H, Alin A, Matas Z, Kirchner M, Brazowski E, Goldiner I, Bruck R. Inhibition of immune-mediated concanavalin a-induced liver damage by free-radical scavengers. Dig Dis Sci. 2010;55(2):268–75.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Wang K, Song Z, Wang H, Li Q, Cui Z, Zhang Y. Angelica sinensis polysaccharide attenuates concanavalin A-induced liver injury in mice. Int Immunopharmacol. 2016;31:140–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Nussler AK, Billiar TR. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993;54(2):171–8.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    García-Monzón C, Majano PL, Zubia I, Sanz P, Apolinario A, Moreno-Otero R. Intrahepatic accumulation of nitrotyrosine in chronic viral hepatitis is associated with histological severity of liver disease. J Hepatol. 2000;32(2):331–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Liu J, Luo S, Yang J, Ren F, Zhao Y, Luo H, Ge K, Zhang H. The protective effect of sheep placental extract on concanavalin A-induced liver injury in mice. Molecules. 2019;24(1):28.CrossRefGoogle Scholar
  58. 58.
    Wang F, Xue Y, Yang J, Lin F, Sun Y, Li T, Wu C. Hepatoprotective effect of apple polyphenols against concanavalin A-induced immunological liver injury in mice. Chem Biol Interact. 2016;258:159–65.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Sass G, Koerber K, Bang R, Guehring H, Tiegs G. Inducible nitric oxide synthase is critical for immune-mediated liver injury in mice. J Clin Invest. 2001;107(4):439–47.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Durez P, Appelboom T, Pira C, Stordeur P, Vray B, Goldman M. Antiinflammatory properties of mycophenolate mofetil in murine endotoxemia: inhibition of TNF-α and upregulation of IL-10 release. Int Immunopharmacol. 1999;21(9):581–7.CrossRefGoogle Scholar
  61. 61.
    Klaassen CD, Reisman SA. Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver. Toxicol Appl Pharmacol. 2010;244(1):57–655.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Min K, Lee JT, Joe E, Kwon TK. An IκBα phosphorylation inhibitor induces heme oxygenase-1 (HO-1) expression through the activation of reactive oxygen species (ROS)–Nrf2–ARE signaling and ROS–PI3K/Akt signaling in an NF-κB-independent mechanism. Cell Signal. 2011;23(9):1505–13.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Osburn WO, Yates MS, Dolan PD, Chen S, Liby KT, Sporn MB, Taguchi K, Yamamoto M, Kensler TW. Genetic or pharmacologic amplification of nrf2 signaling inhibits acute inflammatory liver injury in mice. Toxicol Sci. 2008;104(1):218–27.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    González-Rodríguez Á, Reibert B, Amann T, Constien R, Rondinone CM, Valverde ÁM. In vivo siRNA delivery of Keap1 modulates death and survival signaling pathways and attenuates concanavalin-A-induced acute liver injury in mice. Dis Model Mech. 2014;7(9):1093–100.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Gambhir L, Checker R, Thoh M, Patwardhan R, Sharma D, Kumar M, Sandur SK. 1, 4-Naphthoquinone, a pro-oxidant, suppresses immune responses via KEAP-1 glutathionylation. Biochem Pharmacol. 2014;88(1):95–105.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Zhao M, Chen J, Zhu P, Fujino M, Takahara T, Toyama S, Tomita A, Zhao L, Yang Z, Hei M, Zhong L. Dihydroquercetin (DHQ) ameliorated concanavalin A-induced mouse experimental fulminant hepatitis and enhanced HO-1 expression through MAPK/Nrf2 antioxidant pathway in RAW cells. Int Immunopharmacol. 2015;28(2):938–44.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Arellano-Buendía AS, Tostado-González M, García-Arroyo FE, Cristóbal-García M, Loredo-Mendoza ML, Tapia E, Sánchez-Lozada LG, Osorio-Alonso H. Anti-inflammatory therapy modulates Nrf2-Keap1 in kidney from rats with diabetes. Oxid Med Cell Longev. 2016;2016:4693801.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Liang GB, Luo GH, Bao DS, Chen AJ, Zhuang YX, Guo YN, Wang X, Wang YL, Chen ZP, Lu YP, Li YP. Impact of immunosuppressive agents on the expression of indoleamine 2, 3-dioxygenase, heme oxygenase-1 and interleukin-7 in mesangial cells. Mol Med Rep. 2015;12(2):2577–83.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Li W-w, Yu J-y, Xu H-l, Bao J-k. Concanavalin A: a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics. Biochem Biophys Res Commun. 2011;414(2):282–6.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Mao Y, Wang J, Yu F, Cheng J, Li H, Guo C, Fan X. Ghrelin reduces liver impairment in a model of concanavalin A-induced acute hepatitis in mice. Drug Des Devel Ther. 2015;9:5385.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Maj Institute of Pharmacology Polish Academy of Sciences 2020

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, Faculty of PharmacyMansoura UniversityMansouraEgypt

Personalised recommendations