Skip to main content

Advertisement

Log in

Diphtheria toxoid nanoparticles improve learning and memory impairment in animal model of Alzheimer’s disease

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Alzheimer’s disease (AD) is a neurodegenerative disorder involving memory. The present study aimed at evaluating the effects of encapsulated diphtheria toxoid (DT) on behavioral learning impairment, and XBP1 mRNA splicing in AD.

Methods

A DT-loaded nanoparticle (NP) carrier was prepared using the ionic gelation method. Sixty-three rats were divided into nine groups: (1) healthy, (2–4) sham, and (5–9) AD models: (5) AD was induced by intracerebroventricular injection of amyloid beta (Aβ) 1-42. (6) The rats received a subcutaneous diphtheria vaccine only 28 days before Aβ injection. (7) The rats received an intranasal diphtheria vaccine, in group 8, induced by administering empty chitosan NPs. 9) it was induced by administering chitosan NPs carrying DT. Morris water maze (MWM) test was used to examine the animals’ learning and memory. Also, X-box binding protein 1 (XBP-1) mRNA gene splicing was studied in the hippocampus by reverse-transcription polymerase chain reaction (RT-PCR).

Results

For the first time, chitosan NPs were prepared with an average diameter size of 40 nm and the effectiveness of approximately 70% during DT encapsulation. In comparison with the healthy group, the AD models exhibited significant impairment of learning and memory (P < 0.05), while DT-administrated animals showed significant improvements in learning and memory impairment (P < 0.05). XBP-1 mRNA gene splicing was only detected in an untreated AD group, while encapsulated DT completely inhibited splicing.

Conclusion

The therapeutic effects of DT chitosan NPs against learning and memory impairment were observed in this study, and XBP1 mRNA splicing was reported in the animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. As A. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2018;14(3):367–429.

    Article  Google Scholar 

  2. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walsh DM, Selkoe DJ. A beta oligomers—a decade of discovery. J Neurochem. 2007;101(5):1172–84.

    Article  CAS  PubMed  Google Scholar 

  4. Gerakis Y, Hetz C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. The FEBS J. 2018;285(6):995–1011.

    Article  CAS  PubMed  Google Scholar 

  5. Endres K, Reinhardt S. ER-stress in Alzheimer’s disease: turning the scale? Am J Neurodegener Dis. 2013;2(4):247.

    PubMed  PubMed Central  Google Scholar 

  6. Costa RO, Lacor PN, Ferreira IL, Resende R, Auberson YP, Klein WL, et al. Endoplasmic reticulum stress occurs downstream of GluN2B subunit of N-methyl-d-aspartate receptor in mature hippocampal cultures treated with amyloid-β oligomers. Aging Cell. 2012;11(5):823–33.

    Article  CAS  PubMed  Google Scholar 

  7. Alberdi E, Wyssenbach A, Alberdi M, Sánchez-Gómez MV, Cavaliere F, Rodríguez JJ, et al. Ca2+ -dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of A lzheimer’s disease. Aging Cell. 2013;12(2):292–302.

    Article  CAS  PubMed  Google Scholar 

  8. Viana RJ, Nunes AF, Rodrigues CM. Endoplasmic reticulum enrollment in Alzheimer’s disease. Mol Neurobiol. 2012;46(2):522–34.

    Article  CAS  PubMed  Google Scholar 

  9. Weitz TM, Town T. Microglia in Alzheimer’s Disease: it’s all about context. Int J Alzheimer’s Dis. 2012;2012:11.

    Google Scholar 

  10. Chen X, Stern D, Du Yan S. Mitochondrial dysfunction and Alzheimer’s disease. Curr Alzheimer Res. 2006;3(5):515–20.

    Article  CAS  PubMed  Google Scholar 

  11. Uehara T, Nakamura T, Yao D, Shi Z-Q, Gu Z, Ma Y, et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441(7092):513.

    Article  CAS  PubMed  Google Scholar 

  12. Ferreiro E, Baldeiras I, Ferreira I, Costa R, Rego A, Pereira C, et al. Mitochondrial-and endoplasmic reticulum-associated oxidative stress in Alzheimer’s disease: from pathogenesis to biomarkers. Int J Cell Biol. 2012;2012:735206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Costa RO, Ferreiro E, Martins I, Santana I, Cardoso SM, Oliveira CR, et al. Amyloid β-induced ER stress is enhanced under mitochondrial dysfunction conditions. Neurobiol Aging. 2012;33(4):824. e5.

    Article  CAS  Google Scholar 

  14. Duran-Aniotz C, Martínez G, Hetz C. Memory loss in Alzheimer’s disease: are the alterations in the UPR network involved in the cognitive impairment? Front Aging Neurosci. 2014;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519.

    Article  CAS  PubMed  Google Scholar 

  16. Back SH, Lee K, Vink E, Kaufman RJ. Cytoplasmic IRE1alpha-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J Biol Chem. 2006;281(27):18691–706.

    Article  CAS  PubMed  Google Scholar 

  17. Lee JH, Won SM, Suh J, Son SJ, Moon GJ, Park U-J, et al. Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp Mol Med. 2010;42(5):386–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chafekar SM, Hoozemans JJ, Zwart R, Baas F, Scheper W. A β 1–42 induces mild endoplasmic reticulum stress in an aggregation state-dependent manner. Antioxid Redox Signal. 2007;9(12):2245–54.

    Article  CAS  PubMed  Google Scholar 

  19. Reinhardt S, Schuck F, Grösgen S, Riemenschneider M, Hartmann T, Postina R, et al. Unfolded protein response signaling by transcription factor XBP-1 regulates ADAM10 and is affected in Alzheimer’s disease. FASEB J. 2014;28(2):978–97.

    Article  CAS  PubMed  Google Scholar 

  20. Yong J, Lacan G, Dang H, Hsieh T, Middleton B, Wasserfall C, et al. BCG vaccine-induced neuroprotection in a mouse model of Parkinson’s disease. PLoS ONE. 2011;6(1):e16610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Verreault R, Laurin D, Lindsay J, De Serres G. Past exposure to vaccines and subsequent risk of Alzheimer’s disease. Can Med Assoc J. 2001;165(11):1495–8.

    CAS  Google Scholar 

  22. Liang JL, Tiwari T, Moro P, Messonnier NE, Reingold A, Sawyer M, et al. Prevention of pertussis, tetanus, and diphtheria with vaccines in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2018;67(2):1.

    Article  PubMed  PubMed Central  Google Scholar 

  23. McKee AS, Marrack P. Old and new adjuvants. Curr Opin Immunol. 2017;47:44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bondy SC. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration. Neurotoxicology. 2016;52:222–9.

    Article  CAS  PubMed  Google Scholar 

  25. Mortazavi SA, Rezaei MA. Preparation and evaluation of diphtheria toxoid-containing microspheres. Iran J Pharm Res. 2010;3:133–43.

    Google Scholar 

  26. Bailey AM, Baum RA, Horn K, Lewis T, Morizio K, Schultz A, et al. Review of intranasally administered medications for use in the emergency department. J Emerg Med. 2017;53(1):38–48.

    Article  PubMed  Google Scholar 

  27. Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol. 2017;105(Pt 2):1358–68.

    Article  CAS  PubMed  Google Scholar 

  28. Park K. Controlled drug delivery systems: past forward and future back. J Control Release. 2014;190:3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calvo P, Remuñán-López C, Vila-Jato JL, Alonso M. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125–32.

    Article  CAS  Google Scholar 

  30. Mehrabi M, Dounighi NM, Rezayat SM, Doroud D, Amani A, Khoobi M, et al. Novel approach to improve vaccine immunogenicity: mannosylated chitosan nanoparticles loaded with recombinant hepatitis B antigen as a targeted vaccine delivery system. J Drug Deliv Sci Technol. 2018;44:19–26.

    Article  CAS  Google Scholar 

  31. Cunha GM, Canas PM, Melo CS, Hockemeyer J, Müller CE, Oliveira CR, et al. Adenosine A2A receptor blockade prevents memory dysfunction caused by β-amyloid peptides but not by scopolamine or MK-801. Exp Neurol. 2008;210(2):776–81.

    Article  CAS  PubMed  Google Scholar 

  32. Rezaei Mokarram A, Alonso M. Preparation and evaluation of chitosan nanoparticles containing Diphtheria toxoid as new carriers for nasal vaccine delivery in mice. Arch Razi Inst. 2016;61(1):13–25.

    Google Scholar 

  33. Desai KG. Chitosan nanoparticles prepared by ionotropic gelation: an overview of recent advances. Crit Rev Ther Drug Carr Syst. 2016;33(2):107–58.

    Article  Google Scholar 

  34. Sreekumar S, Goycoolea FM, Moerschbacher BM, Rivera-Rodriguez GR. Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci Rep. 2018;8(1):4695.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kamat V, Bodas D, Paknikar K. Chitosan nanoparticles synthesis caught in action using microdroplet reactions. Sci Rep. 2016;6:22260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Smith DM, Simon JK, Baker JR Jr. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13(8):592–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Coll Surf B. 2008;66(2):274–80.

    Article  CAS  Google Scholar 

  39. Shi Y, Wan A, Shi Y, Zhang Y, Chen Y. Experimental and mathematical studies on the drug release properties of aspirin loaded chitosan nanoparticles. BioMed Res Int. 2014;2014:613–9.

    Google Scholar 

  40. Gordon S, Young K, Wilson R, Rizwan S, Kemp R, Rades T, et al. Chitosan hydrogels containing liposomes and cubosomes as particulate sustained release vaccine delivery systems. J Liposome Res. 2012;22(3):193–204.

    Article  CAS  PubMed  Google Scholar 

  41. Wang C, Ge Q, Ting D, Nguyen D, Shen H-R, Chen J, et al. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater. 2004;3:190.

    Article  CAS  PubMed  Google Scholar 

  42. Zhan X, Stamova B, Sharp FR. Lipopolysaccharide associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer’s Disease brain: a review. Front Aging Neurosci. 2018;10:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ardura-Fabregat A, Boddeke E, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzeriat K, et al. Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs. 2017;31(12):1057–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tran T, Burt D, Eapen L, Keller OR. Spontaneous regression of metastatic melanoma after inoculation with tetanus–diphtheria–pertussis vaccine. Curr Oncol. 2013;20(3):e270–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parachikova A, Agadjanyan MG, Cribbs DH, Blurton-Jones M, Perreau V, Rogers J, et al. Inflammatory changes parallel the early stages of Alzheimer disease. Neurobiol Aging. 2007;28(12):1821–33.

    Article  CAS  PubMed  Google Scholar 

  46. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abulmagd S, Emara M, Aziz S, El-Domany R. Evaluation and characterisation of A and B fragments of Corynebacterium diphtheriae toxin towards recombinant diphtheria vaccine. Indian J Med Microbiol. 2013;31(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  48. McNeela EA, O’Connor D, Jabbal-Gill I, Illum L, Davis SS, Pizza M, et al. A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM(197)) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine. 2000;19(9–10):1188–98.

    Article  CAS  PubMed  Google Scholar 

  49. Alves S, Churlaud G, Audrain M, Michaelsen-Preusse K, Fol R, Souchet B, et al. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease mice. Brain J Neurol. 2017;140(3):826–42.

    Google Scholar 

  50. Edwards M, Balldin VH, Hall J, O’Bryant S. Molecular markers of neuropsychological functioning and Alzheimer’s disease. Alzheimer’s Dement Diagn Assess Dis Monit. 2015;1(1):61–6.

    Google Scholar 

  51. Magalhaes CA, Carvalho MDG, Sousa LP, Caramelli P, Gomes KB. Alzheimer’s disease and cytokine IL-10 gene polymorphisms: is there an association? Arq Neuropsiquiatr. 2017;75(9):649–56.

    Article  PubMed  Google Scholar 

  52. Cevher E, Salomon SK, Somavarapu S, Brocchini S, Alpar HO. Development of chitosan-pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies. J Microencapsul. 2015;32(8):769–83.

    Article  CAS  PubMed  Google Scholar 

  53. Ozbilgin ND, Saka OM, Bozkir A. Preparation and in vitro/in vivo evaluation of mucosal adjuvant in situ forming gels with diphtheria toxoid. Drug Deliv. 2014;21(2):140–7.

    Article  CAS  PubMed  Google Scholar 

  54. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11:1–18.

    Article  CAS  PubMed  Google Scholar 

  55. Sood S, Jain K, Gowthamarajan K. Intranasal therapeutic strategies for management of Alzheimer’s disease. J Drug Target. 2014;22(4):279–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by research deputy of Guilan University of Medical Sciences (GUMS) (96022305).

Author information

Authors and Affiliations

Authors

Contributions

SH, MHC, FS, and MA designed the study, wrote the protocol, performed the interpretation of data, and wrote the first draft of the manuscript. SH, MHC, FS, MA, IN, and EA managed the acquisition of data. MHC, FS, MA, IN, EA, AK, and ARM performed critical revision of the manuscript and managed the literature searches. SH, MHC, and MA performed analysis and administrative, technical and material support. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahmood Abedinzade.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All authors hereby declare that all experiments have been examined and approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. I look forward to hearing you.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, S., Hedayati Ch, M., Saadat, F. et al. Diphtheria toxoid nanoparticles improve learning and memory impairment in animal model of Alzheimer’s disease. Pharmacol. Rep 72, 814–826 (2020). https://doi.org/10.1007/s43440-019-00017-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-019-00017-w

Keywords

Navigation