Microwave synthesis of MWCNT-supported PtRuNi catalysts and their electrocatalytic activity for direct methanol fuel cells

  • 3 Accesses


Multi-walled carbon nanotube (MWCNT)-supported PtRuNi catalysts were synthesized using a microwave heating process. The particle sizes and structures of the catalysts were analyzed using X-ray diffraction and transmission electron microscopy (TEM). The electrocatalytic activities of the catalysts for methanol electrooxidation were evaluated by cyclic voltammetry, chronoamperometry, and impedance spectroscopy. The TEM results revealed that the MWCNT-supported PtRuNi catalyst synthesized via microwave heating for 10 min showed a uniform distribution of nanoparticles with an average size of about 5 nm. The catalyst showed an electrochemically active surface area of 62.2 m2 g−1 and a mass activity of 148.64 mA gpt−1. A decrease in the microwave heating time increased the dispersion and reduced the size of the PtRuNi nanoparticles. Moreover, the improved performance of the catalysts can be attributed to their high proton and electronic conductivity due to nickel hydroxides. Nickel hydroxides produced on the surface of metallic Ni in the Pt lattice contribute to the catalytic activity of PtNi catalysts in direct methanol fuel cells.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Z. Wang, J. Parrondo, C. He, S. Sankarasubramanan, V. Ramani, Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells. Nature Energy 4, 281–289 (2019)

  2. 2.

    N. Kakati, J. Maiti, S.H. Lee, S.H. Jee, B. Viswanathan, Y.S. Yoon, Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt–Ru? Chem. Rev. 14(24), 12397–12429 (2014)

  3. 3.

    S. Roy, S. Hariharan, A.K. Tiwari, Pt–Ni subsurface alloy catalysts: an improved performance toward CH4 dissociation. J. Phys. Chem. C 122(20), 10857–10870 (2018)

  4. 4.

    C.W. Lee, K.D. Yang, D.H. Nam, J.H. Jang, N.H. Cho, S.W. Im, K.T. Nam, Defining a materials database for the design of copper binary alloy catalysts for electrochemical CO2 conversion. Adv. Mater. 30(42), 1704717 (2018)

  5. 5.

    M. Elrouby, H.M.A. El-Lateef, M. Sadek, Electrodeposited Pt nanorods on a novel flowered like nanostructured Ni-Co alloy as an electrocatalyst for methanol oxidation. Int. J. Hydrogen Energy 44(26), 13820–13834 (2019)

  6. 6.

    J. Tang, D. Chen, Q. Yao, J. Xie, J. Yang, Recent advances in noble metal-based nanocomposites for electrochemical reactions. Mater. Today Energy 6, 115–127 (2017)

  7. 7.

    J.N. Tiwari, R.N. Tiwari, G. Singh, S.K. Kim, Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2, 553–578 (2013)

  8. 8.

    V.A. Grinberg, N.A. Mayorova, A.A. Pasynsky, A.A. Shiryaev, V.V. Vysotskii, I.P. Stolarov, I.A. Yakushev, N.V. Cherkashina, M.N. Vargaftik, Y.V. Zubavichus, A.L. Trigub, Nanosized catalysts of oxygen reduction reaction prepared on the base of bimetallic cluster compounds. Electrochim. Acta 299, 886–893 (2019)

  9. 9.

    M.E. Scofield, C. Koenigsmann, L. Wang, H. Liu, S.S. Wong, Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 8, 350–363 (2015)

  10. 10.

    P. Zhang, X. Dai, X. Zhang, Z. Chen, Y. Yang, H. Sun, X. Wang, H. Wang, M. Wang, H. Wu, D. Li, X. Li, Y. Qin, One-pot synthesis of ternary Pt-Ni-Cu nanocrystals with high catalytic performance. Chem. Mater. 27, 6402–6410 (2015)

  11. 11.

    J. Ding, S. Ji, H. Wang, J. Key, D.J.L. Brett, R. Wang, Nano-engineered intrapores in nanoparticles of PtNi networks for increased oxygen reduction reaction activity. J. Power Sources 374, 48–54 (2018)

  12. 12.

    Y. Ma, H. Li, H. Wang, X. Mao, V. Linkov, S. Ji, O.U. Gcilitshana, R. Wang, Evolution of the electrocatalytic activity of carbon-supported amorphous platinum–ruthenium-nickel-phosphorous nanoparticles for methanol oxidation. J. Power Sources 268, 498–507 (2014)

  13. 13.

    X.T. Zhang, H. Wang, J.L. Key, V. Linkov, S. Ji, X.L. Wang, Z.Q. Lei, R.F. Wang, Strain effect of core-shell Co@Pt/C nanoparticle catalyst with enhanced electrocatalytic activity for methanol oxidation. J. Electrochem. Soc. 159(3), B270–B276 (2012)

  14. 14.

    E.H. Kim, G.H. Yoon, S.B. Park, M.H. Oh, S.J. Kim, Y.I. Park, Synthesis of inorganic-organic composite electrolyte membranes for DMFCs. J. Korean Ceram. Soc. 45(2), 119–125 (2008)

  15. 15.

    E. Antolini, J.R. Salgado, E.R. Gonzalez, The methanol oxidation reaction on platinum alloys with the first row transition metals—the case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: a short review. Appl. Catal. B 63, 137–149 (2006)

  16. 16.

    Z. Bai, L. Yang, J. Zhang, L. Li, C. Hu, J. Lv, Y. Guo, High-efficiency carbon-supported platinum catalysts stabilized with sodium citrate for methanol oxidation. J. Power Sourc. 195(9), 2653–2658 (2010)

  17. 17.

    Z.B. Wang, P.J. Zuo, G.P. Yin, Investigations of compositions and performance of PtRuMo/C ternary catalysts for methanol electrooxidation. Fuel Cells 9(2), 106–113 (2009)

  18. 18.

    B. Liu, J.H. Chen, X.X. Zhong, K.Z. Cui, H.H. Zhou, Y.F. Kuang, Preparation and electrocatalytic poperties of Pt–SiO2 nanocatalysts for ethanol electrooxidation. J. Colloid Interface Sci. 307(1), 139–144 (2007)

  19. 19.

    S.H. Lee, D.J. Kim, Y.S. Yoon, Electrochemical characterization of hydrothermally synthesized Pt–Ru–Ni–P catalyst for direct methanol fuel cell. Jpn. J. Appl. Phys. 52(3R), 035001 (2013)

  20. 20.

    G. Wu, L. Li, B.Q. Xu, Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation. Electrochim. Acta 50(1), 1–10 (2004)

  21. 21.

    N. Kakati, J. Maiti, S.H. Lee, Y.S. Yoon, Core shell like behavior of PdMo nanoparticles on multiwall carbon nanotubes and their methanol oxidation activity in alkaline medium. J. Hydrogen Energy 37(24), 19055–19064 (2012)

  22. 22.

    T.C. Deivaraj, W. Chen, Y.J. Lee, Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. J. Mater. Chem. 13, 2555–2560 (2003)

  23. 23.

    K.W. Park, J.H. Choi, B.K. Kwon, S.A. Lee, Y.E. Sung, Y.H. Ha, S.A. Hong, H. Kim, A.J. Wieckowski, Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 106(8), 1869–1877 (2002)

  24. 24.

    Y. Zhang, Y. Shi, R. Chen, L. Tao, D. Liu, D. Yana, S. Wang, Enriched nucleation sites for Pt deposition on ultrathin WO3 nanosheets with unique interactions for methanol oxidation. J. Mater. Chem. A6, 23028–23033 (2018)

  25. 25.

    O. Arutanti, A.B.D. Nandiyanto, T. Ogi, T.O. Kim, K. Okuyama, Influences of porous structurization and Pt addition on the improvement of photocatalytic performance of WO3 particles. ACS Appl. Mater. Interfaces 7(5), 3009–3017 (2015)

Download references


This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF-2018R1C1B6008646).

Author information

Correspondence to Youngwook Lee or Seokhee Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Woo, S., Cho, H., Kim, J. et al. Microwave synthesis of MWCNT-supported PtRuNi catalysts and their electrocatalytic activity for direct methanol fuel cells. J. Korean Ceram. Soc. (2020) doi:10.1007/s43207-020-00016-1

Download citation


  • Direct methanol fuel cells
  • Anodic catalyst
  • PtRuNi nanoparticles
  • Nickel hydroxides
  • Microwave heating