Recombinant xylanase production by Escherichia coli using a non-induced expression system with different nutrient sources

  • Elenira H. M. Mendonça
  • Nilton Cesar Avanci
  • Luis Henrique Romano
  • Daniel Lopes Branco
  • Alessandra Xavier de Pádua
  • Richard John Ward
  • Álvaro de Baptista NetoEmail author
  • Marcos Roberto Lourenzoni
Original Paper


The application of enzymes for sustainable and low-environmental impact industrial processes requires high-level enzyme production at low-cost. A promising strategy is the use of a high efficiency heterologous protein expression system using E. coli and the pT7BsXA vector encoding the GH11 xylanase from Bacillus subtilis with promoter, replication origin and signal peptide sequences from B. subtilis (Ruller et al. 2006). This expression system produces high amounts of enzyme that are secreted to the culture broth. The present study aimed to maximize the xylanase production by this system through evaluation of culture medium composition. Different culture media previously described in the literature together with compositions derived from agro-industrial residues were evaluated. A culture medium derived from agro-industrial residues using sugarcane molasses as carbon source showed a 9-fold increase in enzyme production (195,000 U/L) in relation to LB medium and the lowest production cost, which was 8.5-fold lower than LB medium using sugarcane molasses as carbon source and brewer’s yeast as vitamin source in shaker experiments. In a bioreactor experiment the best production medium promoted an 8.5-fold higher production at a 10.8-fold lower cost as compared to shaker LB cultivation.


Xylanase Recombinant enzymes Bioprocess Agro-industrial residues E. coli 



We would like to thank FAPESP (Proc. 2008/53426-7 and 2010/50328-4) and CNPq (stipends to E.H.M.M and N.C.A.) for financial support.

Supplementary material

43153_2019_4_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20 kb)


  1. Aertsen A, Vanoirbeek K, De Spiegeleer P, Sermon J, Hauben K, Farewell A, Nyström T, Michiels CW (2005) Heat shock protein-mediated resistance to high hydrostatic pressure in Escherichia coli. Appl Environ Microbiol 70(5):2660–2666CrossRefGoogle Scholar
  2. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270CrossRefGoogle Scholar
  3. Bedade D, Berezina O, Singhal RDJ, Shamekh S (2017) Extracellular xylanase production from a new xylanase producer Tuber maculatum mycelium under submerged fermentation and its characterization. Biocatal Agric Biotechnol 11:288–293CrossRefGoogle Scholar
  4. Beshay U, El-Enshasy H, Ismail IMK, Moawad H, Wojciechowska E, Abd-El-Ghany S (2003) β-Glucanase production from genetically modified recombinant Escherichia coli: effect of growth substrates and development of a culture medium in shake flasks and stirred tank bioreactor. Process Biochem 39(3):307–313CrossRefGoogle Scholar
  5. Chang S, Guo Y, Wu B, He B (2017) Extracellular expression of alkali tolerant xylanase from Bacillus subtilis Lucky9 in E. coli and application for xylooligosaccharides production from agro-industrial waste. Int J Biol Macromol. 96:249–256CrossRefGoogle Scholar
  6. Chen R (2012) Bacterial expression systems for recombinant protein production: Escherichia coli and beyond. Biotechnol Adv 30:1102–1107CrossRefGoogle Scholar
  7. de Maré L, Velut S, Ledung E, Cimander C, Norrman B, Karlsson EN, Holst O, Hagander P (2005) A cultivation technique for E. coli fed-batch cultivations operating close to the maximum oxygen transfer capacity of the reactor. Biotechnology letters. 27(14):983–990CrossRefGoogle Scholar
  8. Eijsink VG, Gåseidnes S, Borchert TV, van den Burg B (2005) Directed evolution of enzyme stability. Biomol Eng. 22(1–3):21–30CrossRefGoogle Scholar
  9. Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24(11):530–536CrossRefGoogle Scholar
  10. Irfan M, Asghar U, Nadeem M, Nelofer R, Syed Q (2016) Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation. J Radiat Res Appl Sci. 9(2):139–147CrossRefGoogle Scholar
  11. Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production literature review. J Clean Prod 42:228–240CrossRefGoogle Scholar
  12. Kallel F, Driss D, Chaari F, Zouari-Ellouzi S, Chaabouni M, Ghorbel R, Chaabouni SE (2016) Statistical optimization of low-cost production of an acidic xylanase by Bacillus mojavensis UEB-FK: its potential applications. Biocatal Agric Biotechnol 5:1–7CrossRefGoogle Scholar
  13. Kim BS, Lee SC, Lee SY, Chang YK, Chang HN (2004) High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat. Bioprocess Biosyst Eng 26:147–150CrossRefGoogle Scholar
  14. Lee SH, Lim V, Lee CK (2018) Newly isolate highly potential xylanase producer strain from various environmental sources. Biocatal Agric Biotechnol. 16:669–676CrossRefGoogle Scholar
  15. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31(3):426–428CrossRefGoogle Scholar
  16. Morra R, Del Carratore F, Muhamadali H, Horga LG, Halliwell S, Goodacre R, Breitling R, Dixon N (2018) Translation stress positively regulates MscL-dependent excretion of cytoplasmic proteins. MBio. 9(1):e02118-17CrossRefGoogle Scholar
  17. Müller M, Meusel W, Husemann U, Greller G, Kraume M (2018) Application of heat compensation calorimetry to an E coli fed-batch process. J Biotechnol. 266:133–143CrossRefGoogle Scholar
  18. Oelschlägel M, Heiland C, Schlömann M, Tischler D (2015) Production of recombinant membrane in an Escherichia coli strain for the whole cell biosynthesis of phenylacetic acids. Biotechnol Rep 7:38–43CrossRefGoogle Scholar
  19. Ruller R, Rosa JC, Faça VM, Greene LJ, Ward RJ (2006) Efficient constitutive expression of Bacillus subtilis xylanase A in Escherichia coli DH5α under the control of the Bacillus BsXA promoter. Biotechnol Appl Biochem 4:9–15Google Scholar
  20. Sambrook J, Fritsch EF, Maniatis T (2002) Molecular cloning: a laboratory manual, vol 3. Cold Spring, New YorkGoogle Scholar
  21. Sepahy AA, Ghazi S, Sepahy MA (2011) Cost-effective production and optimization of alkaline xylanase by indigenous Bacillus mojavensis AG137 fermented on agricultural waste. Enzyme Res. 20:111–119Google Scholar
  22. Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 189(23):8746–8749CrossRefGoogle Scholar
  23. Shi X, Xie J, Liao S, Wu T, Zhao LG, Ding G, Wang Z, Xiao W (2017) High-level expression of recombinant thermostable β-glucosidase in Escherichia coli by regulating acetic acid. Bioresource technology. 241:795–801CrossRefGoogle Scholar
  24. Zhang S, Zhang K, Chen X, Chu X, Sun F, Dong Z (2010) Five mutations in N-terminus confer thermostability on mesophilic xylanase. Biochem Biophys Res Commun. 395(2):200–206CrossRefGoogle Scholar

Copyright information

© Associação Brasileira de Engenharia Química 2020

Authors and Affiliations

  • Elenira H. M. Mendonça
    • 1
  • Nilton Cesar Avanci
    • 1
  • Luis Henrique Romano
    • 1
  • Daniel Lopes Branco
    • 1
  • Alessandra Xavier de Pádua
    • 1
  • Richard John Ward
    • 2
  • Álvaro de Baptista Neto
    • 3
    Email author
  • Marcos Roberto Lourenzoni
    • 1
    • 4
  1. 1.Verdartis Desenvolvimento Biotecnológico LtdaRibeirão PretoBrazil
  2. 2.Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  3. 3.Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências FarmacêuticasUniversidade Estadual Paulista Júlio de Mesquita FilhoAraraquaraBrazil
  4. 4.Fundação Oswaldo Cruz, FiocruzEusébioBrazil

Personalised recommendations