Derivations and cohomologies of Lipschitz algebras
Abstract
For a compact metric space (M, d), \({\mathrm {Lip}}M\) denotes the Banach algebra of all complex-valued Lipschitz functions on (M, d). Motivated by a classical result of de Leeuw, we give a canonical construction of a compact Hausdorff space \({\hat{M}}\) and a continuous surjection \(\pi :{\hat{M}} \rightarrow M\) which may viewed as a metric analogue of the unit sphere bundle over a Riemannian manifold. It is shown that, for each \(n \ge 1\) the continuous Hochschild cohomology \({\mathrm {H}}^{n}({\mathrm {Lip}}M, C({\hat{M}}))\) has the infinite rank as a \({\mathrm {Lip}}M\)-module, if the metric space (M, d) admits a local geodesic structure, for example, if M is a compact Riemannian manifold or a non-positively curved metric space. Here \(C({\hat{M}})\) denotes the algebra of all complex-valued continuous functions on \({\hat{M}}\). On the other hand, if the coefficient \(C({\hat{M}})\) is replaced with C(M), then it is shown that \({\mathrm {H}}^{1}({\mathrm {Lip}}M,C(M)) = 0\) for each compact Lipschitz manifold M.
Keywords
Lipschitz algebra Hochschild cohomology De Leeuw map Tangent bundle Stone–Čech compactificationsMathematics Subject Classification
46H99 55N35 58A99 16W99Notes
Acknowledgements
The author is grateful to the referees for their comments which were helpful to improve the exposition of the paper. Kazuhiro Kawamura is supported by JSPS KAKENHI Grant number 17K05241.
References
- 1.Bonsall, F.F., Duncan, J.: Complete Normed Algebras, Erg. Math., vol. 80. Springer, New York, Berlin (1970)Google Scholar
- 2.Botelho, F., Fleming, R., Jamison, J.: Extreme points and isometries on vector-valued Lipschitz spaces. J. Math. Anal. Appl. 381, 821–832 (2011)MathSciNetCrossRefGoogle Scholar
- 3.Bridson, M., Haefliger, A.: Metric spaces of non-positive curvature. Springer, Berlin (1999)CrossRefGoogle Scholar
- 4.de Leeuw, K.: Banach spaces of Lipschitz functions. Stud. Math. 21, 55–66 (1961)MathSciNetCrossRefGoogle Scholar
- 5.Helemskii, A.Y.: The Homology of Banach and Topological Algebras, Math. Appl., vol. 41. Kluwer Acad. Pub., Dordrecht (1989)CrossRefGoogle Scholar
- 6.Johnson, B.E.: Cohomology in Banach Algebras, vol. 127. Memoirs of the American Mathematical Society, Province R.I. (1972)CrossRefGoogle Scholar
- 7.Johnson, B.E.: Higher-dimensional weak amenability. Stud. Math. 123, 117–134 (1997)MathSciNetCrossRefGoogle Scholar
- 8.Kawamura, K.: Point derivation and continuous Hochschild cohomology of Lipschitz algebras. Proc. Edinburgh Math. Soc. (2019). https://doi.org/10.1017/S0013091519000142 CrossRefGoogle Scholar
- 9.Keesling, J., Sher, R.B.: Shape properties of the Stone–Čech compactifications. Gen. Topol. Appl. 9, 1–8 (1978)CrossRefGoogle Scholar
- 10.Kleshchev, A.S.: Homological dimension of Banach algebras of smooth functions is equal to infinity. Vest. Math. Mosk. Univ. Ser. 1. Mat. Mech. 6, 57–60 (1988)MathSciNetzbMATHGoogle Scholar
- 11.Luukkainen, J., Väisäla, V.: Elements of Lipschitz topology. Ann. Acad. Sci. Fennicae Ser. A I. Math. 3, 85–122 (1977)MathSciNetCrossRefGoogle Scholar
- 12.McShane, E.J.: Extension of range of functions. Bull. Am. Math. Soc. 40, 837–842 (1940)MathSciNetCrossRefGoogle Scholar
- 13.Nadaud, F.: On continuous and differential Hochschild cohomology. Lett. Math. Phys. 47, 85–95 (1999)MathSciNetCrossRefGoogle Scholar
- 14.Ogneva, O.S.: Coincidence of homological dimensions of Frechét algebra of smooth functions on a manifold with the dimension of the manifold. Funct. Anal. Appl. 20, 92–93 (1986). (English translation: Funct. Anal. Appl. 20(3):248–250 (1986)) MathSciNetCrossRefGoogle Scholar
- 15.Ogneva, O.S.: Detailed proof of a theorem on coincidence of homological dimensions of Frechét algebras of smooth functions on a manifold with the dimension of the manifold (2014). arXiv:1405.4094v1
- 16.Pflaum, M.J.: On continuous hochschild homology and cohomology groups. Lett. Math. Phys. 44, 43–51 (1998)MathSciNetCrossRefGoogle Scholar
- 17.Pflaum, M.J.: Analytic and Geometric Study of Stratified Spaces, Lect. Notes in Math., vol. 1768. Springer, Berlin (2001)Google Scholar
- 18.Pugach, L.I.: Homological dimension of Banach algebras of smooth functions. Russ. Math. Surv. 37, 135–136 (1982)MathSciNetCrossRefGoogle Scholar
- 19.Sherbert, D.R.: The structure of ideals and point derivations in Banach algebras of Lipschitz functions. Trans. Am. Math. Soc. 111, 240–272 (1964)MathSciNetCrossRefGoogle Scholar
- 20.Walker, R.: The Stone–Čech Compactifications, Erg. der Math., vol. 83. Springer, New York, Berlin (1974)Google Scholar
- 21.Warner, F.W.: Foundation of Differentiable Manifolds and Lie Groups, GTM 94. Springer, New York, Berlin (1971)Google Scholar
- 22.Weaver, H.: Lipschitz Algebras. World Scientific, Singapore (1999)CrossRefGoogle Scholar