Derivations and cohomologies of Lipschitz algebras

  • Kazuhiro KawamuraEmail author
Original Paper


For a compact metric space (Md), \({\mathrm {Lip}}M\) denotes the Banach algebra of all complex-valued Lipschitz functions on (Md). Motivated by a classical result of de Leeuw, we give a canonical construction of a compact Hausdorff space \({\hat{M}}\) and a continuous surjection \(\pi :{\hat{M}} \rightarrow M\) which may viewed as a metric analogue of the unit sphere bundle over a Riemannian manifold. It is shown that, for each \(n \ge 1\) the continuous Hochschild cohomology \({\mathrm {H}}^{n}({\mathrm {Lip}}M, C({\hat{M}}))\) has the infinite rank as a \({\mathrm {Lip}}M\)-module, if the metric space (Md) admits a local geodesic structure, for example, if M is a compact Riemannian manifold or a non-positively curved metric space. Here \(C({\hat{M}})\) denotes the algebra of all complex-valued continuous functions on \({\hat{M}}\). On the other hand, if the coefficient \(C({\hat{M}})\) is replaced with C(M), then it is shown that \({\mathrm {H}}^{1}({\mathrm {Lip}}M,C(M)) = 0\) for each compact Lipschitz manifold M.


Lipschitz algebra Hochschild cohomology De Leeuw map Tangent bundle Stone–Čech compactifications 

Mathematics Subject Classification

46H99 55N35 58A99 16W99 



The author is grateful to the referees for their comments which were helpful to improve the exposition of the paper. Kazuhiro Kawamura is supported by JSPS KAKENHI Grant number 17K05241.


  1. 1.
    Bonsall, F.F., Duncan, J.: Complete Normed Algebras, Erg. Math., vol. 80. Springer, New York, Berlin (1970)Google Scholar
  2. 2.
    Botelho, F., Fleming, R., Jamison, J.: Extreme points and isometries on vector-valued Lipschitz spaces. J. Math. Anal. Appl. 381, 821–832 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bridson, M., Haefliger, A.: Metric spaces of non-positive curvature. Springer, Berlin (1999)CrossRefGoogle Scholar
  4. 4.
    de Leeuw, K.: Banach spaces of Lipschitz functions. Stud. Math. 21, 55–66 (1961)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Helemskii, A.Y.: The Homology of Banach and Topological Algebras, Math. Appl., vol. 41. Kluwer Acad. Pub., Dordrecht (1989)CrossRefGoogle Scholar
  6. 6.
    Johnson, B.E.: Cohomology in Banach Algebras, vol. 127. Memoirs of the American Mathematical Society, Province R.I. (1972)CrossRefGoogle Scholar
  7. 7.
    Johnson, B.E.: Higher-dimensional weak amenability. Stud. Math. 123, 117–134 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kawamura, K.: Point derivation and continuous Hochschild cohomology of Lipschitz algebras. Proc. Edinburgh Math. Soc. (2019). CrossRefGoogle Scholar
  9. 9.
    Keesling, J., Sher, R.B.: Shape properties of the Stone–Čech compactifications. Gen. Topol. Appl. 9, 1–8 (1978)CrossRefGoogle Scholar
  10. 10.
    Kleshchev, A.S.: Homological dimension of Banach algebras of smooth functions is equal to infinity. Vest. Math. Mosk. Univ. Ser. 1. Mat. Mech. 6, 57–60 (1988)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Luukkainen, J., Väisäla, V.: Elements of Lipschitz topology. Ann. Acad. Sci. Fennicae Ser. A I. Math. 3, 85–122 (1977)MathSciNetCrossRefGoogle Scholar
  12. 12.
    McShane, E.J.: Extension of range of functions. Bull. Am. Math. Soc. 40, 837–842 (1940)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nadaud, F.: On continuous and differential Hochschild cohomology. Lett. Math. Phys. 47, 85–95 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ogneva, O.S.: Coincidence of homological dimensions of Frechét algebra of smooth functions on a manifold with the dimension of the manifold. Funct. Anal. Appl. 20, 92–93 (1986). (English translation: Funct. Anal. Appl. 20(3):248–250 (1986)) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ogneva, O.S.: Detailed proof of a theorem on coincidence of homological dimensions of Frechét algebras of smooth functions on a manifold with the dimension of the manifold (2014). arXiv:1405.4094v1
  16. 16.
    Pflaum, M.J.: On continuous hochschild homology and cohomology groups. Lett. Math. Phys. 44, 43–51 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pflaum, M.J.: Analytic and Geometric Study of Stratified Spaces, Lect. Notes in Math., vol. 1768. Springer, Berlin (2001)Google Scholar
  18. 18.
    Pugach, L.I.: Homological dimension of Banach algebras of smooth functions. Russ. Math. Surv. 37, 135–136 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sherbert, D.R.: The structure of ideals and point derivations in Banach algebras of Lipschitz functions. Trans. Am. Math. Soc. 111, 240–272 (1964)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Walker, R.: The Stone–Čech Compactifications, Erg. der Math., vol. 83. Springer, New York, Berlin (1974)Google Scholar
  21. 21.
    Warner, F.W.: Foundation of Differentiable Manifolds and Lie Groups, GTM 94. Springer, New York, Berlin (1971)Google Scholar
  22. 22.
    Weaver, H.: Lipschitz Algebras. World Scientific, Singapore (1999)CrossRefGoogle Scholar

Copyright information

© Tusi Mathematical Research Group (TMRG) 2019

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of TsukubaIbarakiJapan

Personalised recommendations