Advertisement

2-Local isometries between Banach algebras of continuous functions with involution

  • Davood AlimohammadiEmail author
  • Hadis Pazandeh
Original Paper
  • 1 Downloads

Abstract

We give a description of 2-local real isometries between \(C(X,\tau )\) and \(C(Y,\eta )\) where X and Y are compact Hausdorff spaces, X is also first countable and \(\tau \) and \(\eta \) are topological involutions on X and Y, respectively. In particular, we show that every 2-local real isometry T from \(C(X,\tau )\) to \( C(Y,\eta )\) is a surjective real linear isometry whenever X is also separable.

Keywords

Banach algebra 2-Local real isometry Real linear isometry Topological involution 

Mathematics Subject Classification

47B38 46J10 

Notes

Acknowledgements

The authors would like to thank the referee for his/her valuable comments and suggestions.

References

  1. 1.
    Cabello, J.C., Peralta, A.M.: On a generalized Šemrl’s theorem for weak-2-local derivations on \( B(H)\). Banach J. Math. Anal. 11(2), 382–397 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Fošner, A.: 2-local mapping on algebras with involution. Ann. Funct. Anal. 5(1), 63–69 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Györy, M.: 2-local isometries of \(C_0(X)\). Acta Sci. Math. (sezeged) 67, 735–746 (2001)zbMATHGoogle Scholar
  4. 4.
    Hatori, O., Miura, T., Oka, H., Takagi, H.: 2-local isometries and 2-local automorphisms on uniform algebras. Int. Math. Forum 50(2), 2491–2502 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hatori, O., Oi, S.: 2-local isometries on function spaces. In: Recent Trends in Operator Theory and Applications. Contemporary Mathematics, vol. 737, pp. 89–106. American Mathematical Society, Providence, RI (2019)Google Scholar
  6. 6.
    Hosseini, M.: Generalized 2-local isometries of spaces of continuously differentiable functions. Quaest. Math. 40(8), 1003–1014 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jiménez-Vargas, A., Villegas-Vallecillos, M.: 2-local isometries on spaces of Lipschitz functions. Can. Math. Bull. 54, 680–692 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kulkarni, S.H., Arundhathi, S.: Isometries of real function algebras. Comment. Math. 30, 343–356 (1991)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kulkarni, S.H., Limaye, B.V.: Gleason parts of real function algebras. Can. J. Math. 33(1), 181–200 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kulkarni, S.H., Limaye, B.V.: Real Function Algebras. Marcel Dekker, New York (1992)zbMATHGoogle Scholar
  11. 11.
    Lee, K.: Characterizations of peripherally multiplicative mappings between real function algebras. Publ. Math. Debr. 84, 379–397 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, L., Peralta, A.M., Wang, L., Wang, Y.-S.: Weak-2-local isometries on uniform algebras and Lipschitz algebras. Publ. Mat. 63, 241–264 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mazur, S., Ulam, S.: Sur les transformations isométriques d’espaces vectoriels normés. C. R. Math. Acad. Sci. Paris 194, 946–948 (1932)zbMATHGoogle Scholar
  14. 14.
    Molnár, L.: 2-local isometries of some operator algebras. Proc. Edinb. Math. Soc. 45, 349–352 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Šemrl, P.: Local automorphisms and derivations on B(H). Proc. Am. Math. Soc. 125, 2677–2680 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Tusi Mathematical Research Group (TMRG) 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of scienceArak UniversityArakIran

Personalised recommendations