Conditional expectation on non-commutative \(H^{(r,s)}_{p}(\mathcal {A};\ell _{\infty })\) and \(H_{p}(\mathcal {A};\ell _{1})\) spaces: semifinite case

  • D. DauitbekEmail author
  • K. Tulenov
Original Paper


In this paper, we investigate the conditional expectation on the non-commutative \(H^{(r,s)}_{p}(\mathcal {A};\ell _{\infty })\) and \(H_{p}(\mathcal {A};\ell _{1})\) spaces associated with semifinite subdiagonal algebra, and prove the contractibility of the underlying conditional expectation on these spaces.


Semifinite von Neumann algebra Semifinite subdiagonal algebra Non-commutative Hardy spaces Conditional expectation 

Mathematics Subject Classification

46L51 46L52 



The work was partially supported by the grant (no. AP08052004 and no. AP08051978) of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan. We thank the anonymous referee for reading the paper carefully.


  1. 1.
    Arveson, W.B.: Analiticity in operator algebras. Am. J. Math. 89, 578–642 (1967)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bekjan, T.N., Xu, Quanhua: Riesz and Szegö type factorizations for noncommutative Hardy spaces. J. Oper. Theory 62(1), 215–231 (2009)zbMATHGoogle Scholar
  3. 3.
    Bekjan, T.N.: Noncommutative Hardy space associated with semi-finite subdiagonal algebras. J. Math. Anal. Appl. 429, 1347–1369 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bekjan, T.N.: Noncommutative symmetric Hardy spaces. Integral Equ. Oper. Theory 81, 191–212 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bekjan, T.N., Sageman, B.K.: A property of conditional expectation. Positivity 22(5), 1359–1369 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bekjan, T.N., Tulenov, K., Dauitbek, D.: The noncommutative \(H_p^{(r, s)}(\cal{A}; \ell _{\infty })\) and \(H_p(\cal{A};\ell _{1})\) spaces. Positivity 19(4), 877–891 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Blecher, D.P., Labuschagne, L.E.: Applications of the Fuglede–Kadison determinant: Szegö’s theorem and outers for noncommutative \(H^{p}\). Trans. Am. Math. Soc. 360, 6131–6147 (2008)zbMATHCrossRefGoogle Scholar
  8. 8.
    Blecher, D.P., Labuschagne, L.E.: Characterizations of noncommutative \(H^{\infty }\). Integral Equ. Oper. Theory 56, 301–321 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Junge, M.: Doob’s inequality for non-commutative martingales. J. Reine Angew. Math. 549, 149–190 (2002)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Defant, A., Junge, M.: Maximal theorems of Menchoff-Rademacher type in non-commutative \(L_{q}\)-spaces. J. Funct. Anal. 206, 322–355 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dirksen, S.: Noncommutative boyd interpolation theorems. Trans. Am. Math. Soc. 367(6), 4079–4110 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Exel, R.: Maximal subdiagonal algebras. Am. J. Math. 110, 775–782 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ji, G.: Maximality of semifinite subdiagonal algebras. J. Shaanxi Normal Univ. Nat. Sci. Ed. 28(1), 15–17 (2000)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Junge, M., Xu, Q.: Noncommutative maximal ergodic theorems. J. Am. Math. Soc. 20, 385–439 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Labuschagne, L.E.: A noncommutative Szegö theorem for subdiagonal subalgebras of von Neumann algebras. Proc. Am. Math. Soc. 133, 3643–3646 (2005)zbMATHCrossRefGoogle Scholar
  16. 16.
    Marsalli, M., West, G.: Noncommutative \(H^{p}\) spaces. J. Oper. Theory 40, 339–355 (1998)zbMATHGoogle Scholar
  17. 17.
    Pisier, G.: Interpolation between \(H^{p}\) spaces and non-commutative generalizations I. Pac. J. Math. 155, 341–368 (1992)zbMATHCrossRefGoogle Scholar
  18. 18.
    Pisier, G.: Non-commutative vector valued \(L^p\)-spaces and completely p-summing maps. Astérisque 247 (1998). 5189, 667-698 (1997)Google Scholar
  19. 19.
    Pisier, G., Xu, Q.: Noncommutative \(L^p\)-spaces. Handb. Geom. Banach Spaces 2, 1459–1517 (2003)zbMATHCrossRefGoogle Scholar
  20. 20.
    Saito, K.S.: A note on invariant subspaces for finite maximal subdiagonal algebras. Proc. Am. Math. Soc. 77, 348–352 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Sukochev, F., Tulenov, K., Zanin, D.: Nehari-type theorem for non-commutative Hardy spaces. J. Geom. Anal. 27(3), 1789–1802 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Tulenov, K.S.: Noncommutative vector-valued symmetric Hardy spaces. Russ. Math. 59(11), 74–79 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Tulenov, K.: Some properties of the noncommutative \(H_p^{(r, s)}(\cal{A}; \ell _{\infty })\) and \(H_p(\cal{A};\ell _1)\) spaces. AIP Conf. Proc. 1676, 020093 (2015)CrossRefGoogle Scholar

Copyright information

© Tusi Mathematical Research Group (TMRG) 2019

Authors and Affiliations

  1. 1.Abai Kazakh National Pedagogical UniversityAlmatyKazakhstan
  2. 2.Institute of Mathematics and Mathematical ModelingAlmatyKazakhstan
  3. 3.Al-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations