Zero product preserving functionals on \(C(\varOmega )\)-valued spaces of functions

  • Ziba Pourghobadi
  • Fereshteh SadyEmail author
  • Masoumeh Najafi Tavani
Original Paper


Let X be a compact Hausdorff space and \(\varOmega \) be a locally compact \(\sigma \)-compact space. In this paper we study (real-linear) continuous zero product preserving functionals \(\varphi : A \longrightarrow {\mathbb {C}}\) on certain subalgebras A of the Fréchet algebra \(C(X,C(\varOmega ))\). The case that \(\varphi \) is continuous with respect to a specified complete metric on A will also be discussed. In particular, for a compact Hausdorff space K we characterize \(\Vert \cdot \Vert \)-continuous linear zero product preserving functionals on the Banach algebra \(C^1([0,1],C(K))\) equipped with the norm \(\Vert f\Vert =\Vert f\Vert _{[0,1]}+\Vert f'\Vert _{[0,1]}\), where \(\Vert \cdot \Vert _{[0,1]}\) denotes the supremum norm. An application of the results is given for continuous ring homomorphisms on such subalgebras.


Zero product preserving functionals Vector-valued spaces of functions Ring homomorphisms 

Mathematics Subject Classification

47B38 47B48 46J10 



The authors would like to thank the referee for his/her invaluable comments and suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Alaminos, J., Breŝar, M., Ĉerne, M., Extremera, J., Villena, A.R.: Zero product preserving maps on \(C^1[0,1]\). J. Math. Anal. Appl. 347, 472–481 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alaminos, J., Extremera, J., Villena, A.R.: Zero product preserving maps on Banach algebras of Lipschitz functions. J. Math. Anal. Appl. 369, 94–100 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Araujo, J., Beckenstein, E., Narici, L.: Biseparating maps and ring of continuous functions. Manuscr. Math. 62, 257–275 (1988)CrossRefGoogle Scholar
  4. 4.
    Dubarbie, L.: Separating maps between spaces of vector-valued absolutely continuous functions. Can. Math. Bull. 53, 466–474 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Esmaeili, E., Mahyar, M.: Weighted composition operators between vector-valued Lipschitz function spaces. Banach J. Math. Anal. 7, 59–72 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Font, J.J.: Automatic continuity of certain isomorphisms between regular Banach function algebras. Glasgow Math. J. 39(3), 333–343 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Font, J.J., Hernandez, S.: On separating maps between locally compact spaces. Arch. Math. 63, 158–165 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gau, H.L., Jeang, J.S., Wong, N.C.: Biseparating linear maps between continuous vector-valued function spaces. J. Aust. Math. Soc. 74, 101–109 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gillman, L., Jerison, M.: Rings of Continuous Functions. D. Van Nostrand Co., New York (1960)CrossRefGoogle Scholar
  10. 10.
    Goldmann, H.: Uniform Fréchet Algebras. North Holland, Amsterdam (1990)zbMATHGoogle Scholar
  11. 11.
    Hausner, A.: Ideals in a certain Banach algebra. Proc. Am. Math. Soc. 8, 246–249 (1957)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hernandez, S., Beckenstein, E., Narici, L.: Banach-Stone theorems and separating maps. Manuscr. Math. 86, 409–416 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Honary, T.G., Nikou, A., Sanatpour, A.H.: Disjointness preserving linear operators between Banach algebras of vector-valued functions. Banach J. Math. Anal. 8(2), 93–106 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hosseini, M., Sady, F.: Weighted composition operators on \(C(X)\) and \({{\rm Lip}}_c(X, \alpha )\). Tokyo J. Math. 35(1), 71–84 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jeang, J.S., Wong, N.C.: Weighted composition operators of \(C_0(X)\)’s. J. Math. Anal. Appl. 201, 981–993 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jiménez-Vargas, A., Wang, Ya-Shu: Linear biseparating maps between vector-valued little Lipschitz function spaces. Acta Math. Sin. (Engl. Ser.) 26(6), 1005–1018 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kantrowitz, R., Neumann, M.M.: Disjointness preserving and local operators on algebras of differentiable functions. Glasgow Math. J. 43(2), 295–309 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kestelman, H.: Automorphisms of the feild of complex numbers. Proc. Lond. Math. Soc. 2(53), 1–12 (1951)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Laursen, K.B., Neumann, M.M.: An introduction to local spectral theory. Clarendson Press, Oxford (2000)zbMATHGoogle Scholar
  20. 20.
    Michael, E.: Locally multiplicatively-convex topological algebras. American Mathematical Society, USA (1952) CrossRefGoogle Scholar
  21. 21.
    Miura, T.: A representation of ring homomorphisms on unital regular commutative Banach algebras. Math. J. Okayama Univ. 44, 143–153 (2002)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Pourghobadi, Z., Najafi Tavani, M., Sady, F.: Jointly separating maps between vector-valued function spaces. arXiv:1804.10915v1(preprint)
  23. 23.
    Takahasi, S.E., Hatori, O.: A structure of ring homomorphisms on commutative Banach algebras. Proc. Am. Math. Soc. 127(8), 2283–2288 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Tusi Mathematical Research Group (TMRG) 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Pure Mathematics, Faculty of Mathematical SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of Mathematics, Faculty of Basic SciencesIslamic Azad University, Islamshahr BranchTehranIran

Personalised recommendations