On the factorization theorem for the tensor product of integrable distributions

  • Oswaldo Flores-MedinaEmail author
  • Juan H. Arredondo
  • Juan A. Escamilla-Reyna
  • Francisco J. Mendoza-Torres
Original Paper


In this paper, we applied the Factorization Theorem of W. Rudin and H. Cohen for obtaining a factorization of the tensor product of the space \(\overline{ HK ( {\mathbb {R}} ) }\) with itself, where \(\overline{ HK ( {\mathbb {R}} ) }\) is the completion of the space of the Henstock-Kurzweil integrable functions. This generalizes the results over the factorizations of \(L^1 ({\mathbb {R}})\) and \(\overline{ HK ( {\mathbb {R}} ) }\). In particular, we prove that for the Banach algebra \( \overline{ \big ( HK({\mathbb {R}})\cap BV({\mathbb {R}}) \big ) \otimes _\gamma \big ( HK({\mathbb {R}})\cap BV({\mathbb {R}}) \big ) } \) contained in \( \overline{ HK({\mathbb {R}}) \otimes _\gamma HK({\mathbb {R}}) }\), the Factorization Theorem does not hold. Similar results are therefore valid for the space \(\overline{ {\mathcal {A}}_C ({\mathbb {R}}) \otimes _\gamma {\mathcal {A}}_C ({\mathbb {R}}) }\). Moreover, we build a new integral which is applied to extend some properties of the Fourier Transform on the classic space \(L^{2} ({\mathbb {R}}^2 )\).


Henstock-Kurzweil space Factorization theorem Convolution Distributional integral Tensor product 

Mathematics Subject Classification

26A39 46M05 43A32 42A85 46F12 



The authors express their sincere gratitude to Nancy Keranen for her excellent support. This work was partially supported by CONACyT-SNI, VIEP-BUAP, México.


  1. 1.
    Alexiewicz, A.: Linear functionals on Denjoy-integrable functions. Colloq. Math. 1, 289–293 (1948)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ang, D.D., Schmitt, K., Vy, L.K.: A multidimensional analogue of the Denjoy-Perron- Henstock-Kurzweil integral. Bull. Belg. Math. Soc. Simon Stevin 4(3), 355–371 (1997)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bongiorno, B., Panchapagesan, T.V.: On the Alexiewicz topology of the Denjoy space. Real Anal. Exch. 21, 604–614 (1995)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cohen, P.J.: Factorization in group algebras. Duke Math. J. 26, 199–205 (1959)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Diestel, J., Uhl Jr., J.J.: Vector Measures. AMS, Providence (1977)CrossRefGoogle Scholar
  6. 6.
    Dunford, N., Schatten, R.: On the associate and conjugate space for the direct product of Banach spaces. Trans. Amer. Math. Soc. 59, 430–436 (1946)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Faure, C.A., Mawhin, J.: The Hake’s property for some integrals over multidimensional intervalsA. Real Anal. Exch. 20, 622–630 (1994)zbMATHGoogle Scholar
  8. 8.
    Gelbaum, B.R.: Tensor products of Banach algebras. Canad. J. Math. 11, 297–310 (1959)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Heikkilä, S., Talvila, E.: Distributions, their primitives and integrals with applications to differential equations. Dynam. Syst. Appl. 22, 207–249 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Structure and Analysis on Locally Compact Groups; Analysis on Locally Compact Abelian Groups, p. 771. Springer, New York-Berlin (1970)Google Scholar
  11. 11.
    Leader, S.: The Kurzweil-Henstock Integral and its Differential: A Unified Theory of Integration on \({\mathbb{R}}\) and \({\mathbb{R}}^n\), p. 351. Marcel Dekker, New York (2001)Google Scholar
  12. 12.
    Mendoza-Torres, F.J., Morales-Macías, M.G., Escamilla-Reyna, J.A., Arredondo- Ruiz, J.H.: Several aspects around the Riemann-Lebesgue lemma. J. Adv. Res. Pure Math. 5, 33–46 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Morales-Macías, M.G., Arredondo-Ruiz, J.H.: Factorization in the space of Henstock-Kurzweil integrable functions. Azerb. J. Math. 7, 116–131 (2017)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Morales-Macías, M.G., Arredondo-Ruiz, J.H., Mendoza-Torres, F.J.: An extension of some properties for the Fourier transform operator on \(L^p\) spaces. Rev. Un. Mat. Argentina 57, 85–94 (2016)MathSciNetGoogle Scholar
  15. 15.
    Muldowney, P., Skvortsov, V.A.: Improper Riemann integral and Henstock integral in \({\mathbb{R}}^n\). Math. Notes 78, 228–233 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis, vol. I, p. 400. Academic Press, New York (1980)zbMATHGoogle Scholar
  17. 17.
    Rudin, W.: Factorization in the group algebra of the real line. Proc. Natl. Acad. Sci. USA 43, 339–340 (1957)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rudin, W.: Representation of functions by convolutions. J. Math. Mech. 7, 103–115 (1958)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Rudin, W.: Real and complex analysis, p. 416. McGraw-Hill, New York (1987)zbMATHGoogle Scholar
  20. 20.
    Ryan, R.A.: Introduction to Tensor Products of Banach Spaces, p. 223. Springer-Verlag London Limited, Great Britain (2002)CrossRefGoogle Scholar
  21. 21.
    Schatten, R.: A Theory of Cross-Spaces, p. 162. Princeton, Princeton University Press (1985)CrossRefGoogle Scholar
  22. 22.
    Swartz, C.: Introduction to Gauge Integrals, p. 157. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  23. 23.
    Talvila, E.: The distributional Denjoy integral. Real Anal. Exch. 33, 51–82 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Talvila, E.: Convolutions with the continuous primitive integral. Abstr. Appl. Anal. 2009, 307404 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Talvila, E.: Fourier series with the continuous primitive integral. J. Fourier Anal. Appl. 18(1), 27–44 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tomiyama, J.: Tensor products of commutative Banach algebras. Tohoku Math. J. 2(12), 147–154 (1960)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yeong, L.T.: Henstock-Kurzweil Integration on Euclidean Spaces, p. 314. World Scientific, Singapore (2011)zbMATHGoogle Scholar

Copyright information

© Tusi Mathematical Research Group (TMRG) 2019

Authors and Affiliations

  • Oswaldo Flores-Medina
    • 1
    Email author
  • Juan H. Arredondo
    • 2
  • Juan A. Escamilla-Reyna
    • 1
  • Francisco J. Mendoza-Torres
    • 1
  1. 1.Benemérita Universidad Autónoma de Puebla, FCFMPueblaMexico
  2. 2.Department of MathematicsUniversidad Autónoma MetropolitanaIztapalapaMexico

Personalised recommendations