Advertisement

Backwards Itô–Henstock’s version of Itô’s formula

  • Ricky F. Rulete
  • Mhelmar A. LabendiaEmail author
Original Paper

Abstract

In this paper, we formulate a version of Itô’s formula for the backwards Itô–Henstock integral of an operator-valued stochastic process. Itô’s formula is the stochastic analogue of the change of variable for deterministic integrals.

Keywords

Backwards Itô–Henstock integral Itô’s formula Q-Wiener process 

Mathematics Subject Classification

60H30 60H05 

Notes

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments for the improvement of this paper.

References

  1. 1.
    Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Arcede, J., Cabral, E.: An equivalent definition for the backwards Itô integral. Thai J. Math. 9, 619–630 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arcede, J., Cabral, E.: On integration-by-parts and Itô formula for backwards Itô integral. MINDANAWAN J. Math. 3, 112–132 (2012)Google Scholar
  4. 4.
    Aubin, J.P.: Applied Functional Analysis, 2nd edn. Wiley, New York (2000)CrossRefGoogle Scholar
  5. 5.
    Chew, T.S., Toh, T.L., Tay, J.Y.: The non-uniform Riemann approach to Itô’s integral. Real Anal. Exch. 27, 495–514 (2002-2003)Google Scholar
  6. 6.
    Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  7. 7.
    Dieudonné, J.: Foundations of Modern Analysis. Academic Press, London (1969)zbMATHGoogle Scholar
  8. 8.
    Gawarecki, L., Mandrekar, V.: Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations. Springer, Berlin (2011)CrossRefGoogle Scholar
  9. 9.
    Graves, L.M.: Riemann integration and Taylor’s theorem in general analysis. Trans. Am. Math. Soc. 29, 163–177 (1927)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Labendia, M., De Lara-Tuprio, E., Teng, T.R.: Itô-Henstock integral and Itô’s formula for the operator-valued stochastic process. Math. Bohemica 143, 135–160 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    McShane, E.J.: Stochastic integrals and stochastic functional equations. SIAM J. Appl. Math. 17, 287–306 (1969)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nashed, M.Z.: Differentiability and related properties of nonlinear operators: some aspects of the role of differentials in nonlinear functional analysis. In: Rall, L. (ed.) Nonlinear Functional Analysis and Applications, pp. 103–309. Academic Press, New York (1971)CrossRefGoogle Scholar
  13. 13.
    Pop-Stojanovic, Z.R.: On McShane’s belated stochastic integral. SIAM J. Appl. Math. 22, 87–92 (1972)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Springer, Berlin (2007)zbMATHGoogle Scholar
  15. 15.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, London (1980)zbMATHGoogle Scholar
  16. 16.
    Rulete, R., Labendia, M.: Backwards Itô-Henstock integral for the Hilbert–Schmidt–Valued stochastic process. Eur. J. Pure Appl. Math. 12, 58–78 (2019)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Toh, T.L., Chew, T.S.: Henstock’s version of Itô’s formula. Real Anal. Exch. 35, 375–390 (2009-2010)Google Scholar
  18. 18.
    Toh, T.L., Chew, T.S.: On the Henstock–Fubini theorem for multiple stochastic integrals. Real Anal. Exch. 30, 295–310 (2004-2005)Google Scholar
  19. 19.
    Toh, T.L., Chew, T.S.: The Riemann approach to stochastic integration using non-uniform meshes. J. Math. Anal. Appl. 280, 133–147 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Tusi Mathematical Research Group (TMRG) 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, College of Arts and SciencesUniversity of Southeastern PhilippinesDavao CityPhilippines
  2. 2.Department of Mathematics and Statistics, College of Science and MathematicsMSU-Iligan Institute of TechnologyIligan CityPhilippines

Personalised recommendations