Skip to main content

Advertisement

Log in

The Placenta’s Role in Sexually Dimorphic Fetal Growth Strategies

  • Pregnancy: Review (Invited)
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Challis J, Newnham J, Petraglia F, et al. Fetal sex and preterm birth. Placenta. 2013;34:95–9. https://doi.org/10.1016/j.placenta.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  2. Verburg PE, Tucker G, Scheil W, et al. Sexual dimorphism in adverse pregnancy outcomes - a retrospective Australian population study 1981–2011. PLoS ONE. 2016;11:e0158807. https://doi.org/10.1371/journal.pone.0158807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Al-Qaraghouli M, Fang YMV. Effect of fetal sex on maternal and obstetric outcomes. Front Pediatr. 2017;5:144. https://doi.org/10.3389/fped.2017.00144.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Broere-Brown ZA, Adank MC, Benschop L, et al. Fetal sex and maternal pregnancy outcomes: a systematic review and meta-analysis. Biol Sex Differ. 2020;11:26. https://doi.org/10.1186/s13293-020-00299-3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mondal D, Galloway TS, Bailey TC, et al. Elevated risk of stillbirth in males: systematic review and meta-analysis of more than 30 million births. BMC Med. 2014;12:220. https://doi.org/10.1186/s12916-014-0220-4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Orzack SH, Stubblefield JW, Akmaev VR, et al. The human sex ratio from conception to birth. Proc Natl Acad Sci U S A. 2015;112:E2102–11. https://doi.org/10.1073/pnas.1416546112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carpenter T, Grecian SM, Reynolds RM. Sex differences in early-life programming of the hypothalamic-pituitary-adrenal axis in humans suggest increased vulnerability in females: a systematic review. J Dev Orig Health Dis. 2017;8:244–55. https://doi.org/10.1017/S204017441600074X.

    Article  CAS  PubMed  Google Scholar 

  8. Glover V, Hill J. Sex differences in the programming effects of prenatal stress on psychopathology and stress responses: an evolutionary perspective. Physiol Behav. 2012;106:736–40. https://doi.org/10.1016/j.physbeh.2012.02.011.

    Article  CAS  PubMed  Google Scholar 

  9. Dearden L, Bouret SG, Ozanne SE. Sex and gender differences in developmental programming of metabolism. Mol Metab. 2018;15:8–19. https://doi.org/10.1016/j.molmet.2018.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moritz KM, Cuffe JSM, Wilson LB, et al. Review: Sex specific programming: a critical role for the renal renin-angiotensin system. Placenta. 2010;24:S40–6. https://doi.org/10.1016/j.placenta.2010.01.006.

    Article  CAS  Google Scholar 

  11. Eriksson JG, Kajantie E, Osmond C, et al. Boys live dangerously in the womb. Am J Hum Biol. 2010;22:330–5. https://doi.org/10.1002/ajhb.20995.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dauber A, Munoz-Calvo MT, Barrios V, et al. Mutations in pregnancy-associated plasma protein A2 cause short stature due to low IGF-I availability. EMBO Mol Med. 2016;8:363–74. https://doi.org/10.15252/emmm.201506106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sandman CA, Glynn LM, Davis EP. Is there a viability-vulnerability tradeoff? Sex differences in fetal programming. J Psychosom Res. 2013;75:327–35. https://doi.org/10.1016/j.jpsychores.2013.07.009.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Clifton VL. Review: Sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta. 2010;31:S33–9. https://doi.org/10.1016/j.placenta.2009.11.010.

    Article  CAS  PubMed  Google Scholar 

  15. Kalisch-Smith JI, Simmons DG, Dickinson H, et al. Review: Sexual dimorphism in the formation, function and adaptation of the placenta. Placenta. 2017;54:10–6. https://doi.org/10.1016/j.placenta.2016.12.008.

    Article  CAS  PubMed  Google Scholar 

  16. Gabory A, Roseboom TJ, Moore T, et al. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ. 2013;4:5. https://doi.org/10.1186/2042-6410-4-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tarrade A, Panchenko P, Junien C, et al. Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol. 2015;218:50–8. https://doi.org/10.1242/jeb.110320.

    Article  PubMed  Google Scholar 

  18. Cheong JN, Wlodek ME, Moritz KM, et al. Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations. J Physiol. 2016;594:4727–40. https://doi.org/10.1113/JP271745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pérez-Cerezales S, Ramos-Ibeas P, Rizos D, et al. Early sex-dependent differences in response to environmental stress. Reproduction. 2018;155:R39–51. https://doi.org/10.1530/REP-17-0466.

    Article  PubMed  Google Scholar 

  20. Zazara DE, Arck PC. Developmental origin and sex-specific risk for infections and immune diseases later in life. Semin Immunopathol. 2019;41:137–51. https://doi.org/10.1007/s00281-018-0713-x.

    Article  PubMed  Google Scholar 

  21. Bronson SL, Bale TL. The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsychopharmacology. 2016;41:207–18. https://doi.org/10.1038/npp.2015.231.

    Article  PubMed  Google Scholar 

  22. Burton GJ, Fowden AL, Thornburg KL. Placental Origins of Chronic Disease. Physiol Rev. 2016;96:1509–65. https://doi.org/10.1152/physrev.00029.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosenfeld CS. Sex-specific placental responses in fetal development. Endocrinology. 2015;156:3422–34. https://doi.org/10.1210/en.2015-1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Myatt L, Muralimanoharan S, Maloyan A. Effect of preeclampsia on placental function: Influence of sexual dimorphism, microRNA’s and mitochondria. Adv Exp Med Biol. 2014;814:133–46. https://doi.org/10.1007/978-1-4939-1031-1_12.

    Article  CAS  PubMed  Google Scholar 

  25. Sathishkumar K, Balakrishnan M, Chinnathambi V, et al. Fetal sex-related dysregulation in testosterone production and their receptor expression in the human placenta with preeclampsia. J Perinatol. 2012;32:328–35. https://doi.org/10.1038/jp.2011.101.

    Article  CAS  PubMed  Google Scholar 

  26. Meakin AS, Clifton VL. Review: Understanding the role of androgens and placental AR variants: Insight into steroid-dependent fetal-placental growth and development. Placenta. 2019;84:63–8. https://doi.org/10.1016/j.placenta.2019.03.006.

    Article  CAS  PubMed  Google Scholar 

  27. Rosenfeld CS. The placenta-brain-axis. J Neurosci Res. 2021;99:271–83. https://doi.org/10.1002/jnr.24603.

    Article  CAS  PubMed  Google Scholar 

  28. Singh RR, Cuffe JS, Moritz KM. Short- and long-term effects of exposure to natural and synthetic glucocorticoids during development. Clin Exp Pharmacol Physiol. 2012;39:979–89. https://doi.org/10.1111/1440-1681.12009.

    Article  CAS  PubMed  Google Scholar 

  29. Bale TL. The placenta and neurodevelopment: sex differences in prenatal vulnerability. Dialogues Clin Neurosci. 2016;18:459–64.

    Article  Google Scholar 

  30. Clifton VL, Cuffe J, Moritz KM, et al. Review: The role of multiple placental glucocorticoid receptor isoforms in adapting to the maternal environment and regulating fetal growth. Placenta. 2017;54:24–9. https://doi.org/10.1016/j.placenta.2016.12.017.

    Article  CAS  PubMed  Google Scholar 

  31. Wieczorek A, Perani CV, Nixon M, et al. Sex-specific regulation of stress-induced fetal glucocorticoid surge by the mouse placenta. Am J Physiol Endocrinol Metab. 2019;317:E109–20. https://doi.org/10.1152/ajpendo.00551.2018.

    Article  CAS  PubMed  Google Scholar 

  32. Cuffe JSM, Walton SL, Singh RR, et al. Mid- to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex- specific manner. J Physiol. 2014;592:3127–41. https://doi.org/10.1113/jphysiol.2014.272856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Napso T, Hung Y-P, Davidge ST, et al. Advanced maternal age compromises fetal growth and induces sex-specific changes in placental phenotype in rats. Sci Rep. 2019;9:16916. https://doi.org/10.1038/s41598-019-53199-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petropoulos S, Edsgärd D, Reinius B, et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016;165:1012–26. https://doi.org/10.1016/j.cell.2016.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Engel N. Sex Differences in Early Embryogenesis: Inter-Chromosomal Regulation Sets the Stage for Sex-Biased Gene Networks: The dialogue between the sex chromosomes and autosomes imposes sexual identity soon after fertilization. BioEssays. 2018;40: e1800073. https://doi.org/10.1002/bies.201800073.

    Article  PubMed  Google Scholar 

  36. Lowe R, Gemma C, Rakyan VK, et al. Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development. BMC Genomics. 2015;16:295. https://doi.org/10.1186/s12864-015-1506-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Werner RJ, Schultz BM, Huhn JM, et al. Sex chromosomes drive gene expression and regulatory dimorphisms in mouse embryonic stem cells. Biol Sex Differ. 2017;8:28. https://doi.org/10.1186/s13293-017-0150-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Okamoto I, Patrat C, Thépot D, et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature. 2011;472:370–4. https://doi.org/10.1038/nature09872.

    Article  CAS  PubMed  Google Scholar 

  39. Disteche CM, Berletch JB. X-chromosome inactivation and escape. J Genet. 2015;94:591–9. https://doi.org/10.1007/s12041-015-0574-1.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Deegan DF, Engel N. Sexual dimorphism in the age of genomics: how, when, where. Front Cell Dev Biol. 2019;7:186. https://doi.org/10.3389/fcell.2019.00186.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bellott DW, Hughes JF, Skaletsky H, et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature. 2014;508:494–9. https://doi.org/10.1038/nature13206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Graves JAM. Review: Sex chromosome evolution and the expression of sex-specific genes in the placenta. Placenta. 2010;31(Suppl):S27-32. https://doi.org/10.1016/j.placenta.2009.12.029.

    Article  CAS  PubMed  Google Scholar 

  43. Moreira de Mello JC, de Araújo ESS, Stabellini R, et al. Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome. PLoS One. 2010;5:e10947. https://doi.org/10.1371/journal.pone.0010947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hemberger M, Kurz H, Orth A, et al. Genetic and developmental analysis of X-inactivation in interspecific hybrid mice suggests a role for the Y chromosome in placental dysplasia. Genetics. 2001;157:341–8. https://doi.org/10.1093/genetics/157.1.341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wolstenholme JT, Rissman EF, Bekiranov S. Sexual differentiation in the developing mouse brain: contributions of sex chromosome genes. Genes Brain Behav. 2013;12:166–80. https://doi.org/10.1111/gbb.12010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev. 2009;30:883–925. https://doi.org/10.1210/er.2009-0016.

    Article  CAS  PubMed  Google Scholar 

  47. McWhorter ES, Russ JE, Winger QA, et al. Androgen and estrogen receptors in placental physiology and dysfunction. Front Biol (Beijing). 2018;13:315–26. https://doi.org/10.1007/s11515-018-1517-z.

    Article  Google Scholar 

  48. Lee J-Y, Yun HJ, Kim CY, et al. Prenatal exposure to dexamethasone in the mouse induces sex-specific differences in placental gene expression. Dev Growth Differ. 2017;59:515–25. https://doi.org/10.1111/dgd.12376.

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez TL, Sun T, Koeppel AF, et al. Sex differences in the late first trimester human placenta transcriptome. Biol Sex Differ. 2018;9:4. https://doi.org/10.1186/s13293-018-0165-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Braun AE, Muench KL, Robinson BG, et al. Examining sex differences in the human placental transcriptome during the first fetal androgen peak. Reprod Sci. 2021;28(3):801–18.

    Article  CAS  Google Scholar 

  51. Liu F, Simasotchi C, Vibert F, et al. Age and sex-related changes in human first-trimester placenta transcriptome and insights into adaptative responses to increased oxygen. Int J Mol Sci. 2021;22:1–20. https://doi.org/10.3390/ijms22062901.

    Article  CAS  Google Scholar 

  52. Eaves LA, Phookphan PE, Rager J, et al. A role for microRNAs in the epigenetic control of sexually dimorphic gene expression in the human placenta. Epigenomics. 2020;12:1543–58. https://doi.org/10.2217/epi-2020-0062.

    Article  CAS  PubMed  Google Scholar 

  53. Gong S, Sovio U, Aye IL, et al. Placental polyamine metabolism differs by fetal sex, fetal growth restriction, and preeclampsia. JCI insight. 2018;3:e120723. https://doi.org/10.1172/jci.insight.120723.

    Article  PubMed Central  Google Scholar 

  54. Buckberry S, Bianco-Miotto T, Bent SJ, et al. Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal-maternal interface. Mol Hum Reprod. 2014;20:810–9. https://doi.org/10.1093/molehr/gau035.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Andraweera PH, Dekker GA, Roberts CT. The vascular endothelial growth factor family in adverse pregnancy outcomes. Hum Reprod Update. 2012;18:436–57. https://doi.org/10.1093/humupd/dms011.

    Article  CAS  PubMed  Google Scholar 

  56. Rios-Fuller TJ, Mahe M, Walters B, et al. Translation regulation by eIF2α phosphorylation and mtorc1 signaling pathways in non-communicable diseases (NCDs). Int J Mol Sci. 2020;21:5301. https://doi.org/10.3390/ijms21155301.

    Article  CAS  PubMed Central  Google Scholar 

  57. Rosario FJ, Powell TL, Gupta MB, et al. mTORC1 transcriptional regulation of ribosome subunits, protein synthesis, and molecular transport in primary human trophoblast cells. Front cell Dev Biol. 2020;8:583801. https://doi.org/10.3389/fcell.2020.583801.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yung H, Calabrese S, Hynx D, et al. Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am J Pathol. 2008;173:451–62. https://doi.org/10.2353/ajpath.2008.071193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen Y-Y, Rosario FJ, Shehab MA, et al. Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR. Clin Sci (Lond). 2015;129:1131–41. https://doi.org/10.1042/CS20150511.

    Article  CAS  Google Scholar 

  60. Du L, He F, Kuang L, et al. eNOS/iNOS and endoplasmic reticulum stress-induced apoptosis in the placentas of patients with preeclampsia. J Hum Hypertens. 2017;31:49–55. https://doi.org/10.1038/jhh.2016.17.

    Article  CAS  PubMed  Google Scholar 

  61. Gaccioli F, White V, Capobianco E, et al. Maternal overweight induced by a diet with high content of saturated fat activates placental mTOR and eIF2alpha signaling and increases fetal growth in rats. Biol Reprod. 2013;89:96. https://doi.org/10.1095/biolreprod.113.109702.

    Article  CAS  PubMed  Google Scholar 

  62. Syrett CM, Sierra I, Berry CL, et al. Sex-Specific gene expression differences are evident in human embryonic stem cells and during in vitro differentiation of human placental progenitor cells. Stem Cells Dev. 2018;27:1360–75. https://doi.org/10.1089/scd.2018.0081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun T, Gonzalez TL, Deng N, et al. Sexually dimorphic crosstalk at the maternal-fetal interface. J Clin Endocrinol Metab. 2020;105:e4831–47. https://doi.org/10.1210/clinem/dgaa503.

    Article  PubMed Central  Google Scholar 

  64. Cvitic S, Longtine MS, Hackl H, et al. The human placental sexome differs between trophoblast epithelium and villous vessel endothelium. PLoS ONE. 2013;8: e79233. https://doi.org/10.1371/journal.pone.0079233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Robinson JF, Kapidzic M, Gormley M, et al. Transcriptional dynamics of cultured human villous cytotrophoblasts. Endocrinology. 2017;158:1581–94. https://doi.org/10.1210/en.2016-1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Papuchova H, Kshirsagar S, Xu L, et al. Three types of HLA-G+ extravillous trophoblasts that have distinct immune regulatory properties. Proc Natl Acad Sci U S A. 2020;117:15772–7. https://doi.org/10.1073/pnas.2000484117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pollheimer J, Vondra S, Baltayeva J, et al. Regulation of placental extravillous trophoblasts by the maternal uterine environment. Front Immunol. 2018;9:2597. https://doi.org/10.3389/fimmu.2018.02597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cirkovic A, Garovic V, Milin Lazovic J, et al. Systematic review supports the role of DNA methylation in the pathophysiology of preeclampsia: a call for analytical and methodological standardization. Biol Sex Differ. 2020;11:36. https://doi.org/10.1186/s13293-020-00313-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martin E, Smeester L, Bommarito PA, et al. Sexual epigenetic dimorphism in the human placenta: implications for susceptibility during the prenatal period. Epigenomics. 2017;9:267–78. https://doi.org/10.2217/epi-2016-0132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gong S, Johnson MD, Dopierala J, et al. Genome-wide oxidative bisulfite sequencing identifies sex-specific methylation differences in the human placenta. Epigenetics. 2018;13:228–39. https://doi.org/10.1080/15592294.2018.1429857.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gallou-Kabani C, Gabory A, Tost J, et al. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One. 2010;5:e14398.

    Article  CAS  Google Scholar 

  72. Tsamou M, Vrijens K, Wang C, et al. Genome-wide microRNA expression analysis in human placenta reveals sex-specific patterns: an ENVIRONAGE birth cohort study. Epigenetics. 2020;1:16. https://doi.org/10.1080/15592294.2020.1803467.

    Article  Google Scholar 

  73. Guo S, Huang S, Jiang X, et al. Variation of microRNA expression in the human placenta driven by population identity and sex of the newborn. BMC Genomics. 2021;22:286. https://doi.org/10.1186/s12864-021-07542-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cvitic S, Strutz J, Appel HM, et al. Sexual dimorphism of miRNA signatures in feto-placental endothelial cells is associated with altered barrier function and actin organization. Clin Sci (Lond). 2020;134:39–51. https://doi.org/10.1042/CS20190379.

    Article  CAS  Google Scholar 

  75. Bukowski R, Smith GCS, Malone FD, et al. Human sexual size dimorphism in early pregnancy. Am J Epidemiol. 2007;165:1216–8. https://doi.org/10.1093/aje/kwm024.

    Article  PubMed  Google Scholar 

  76. Broere-Brown ZA, Baan E, Schalekamp-Timmermans S, et al. Sex-specific differences in fetal and infant growth patterns: a prospective population-based cohort study. Biol Sex Differ. 2016;7:65. https://doi.org/10.1186/s13293-016-0119-1.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kiserud T, Piaggio G, Carroli G, et al. The World Health Organization fetal growth charts: a multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med. 2017;14: e1002220. https://doi.org/10.1371/journal.pmed.1002220.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Roseboom TJ, Painter RC, De Rooij SR, et al. Effects of famine on placental size and efficiency. Placenta. 2011;32:395–9. https://doi.org/10.1016/j.placenta.2011.03.001.

    Article  CAS  PubMed  Google Scholar 

  79. Alwasel SH, Abotalib Z, Aljarallah JS, et al. Changes in Placental Size during Ramadan. Placenta. 2010;31:607–10. https://doi.org/10.1016/j.placenta.2010.04.010.

    Article  CAS  PubMed  Google Scholar 

  80. Alwasel SH, Abotalib Z, Aljarallah JS, et al. Secular increase in placental weight in Saudi Arabia. Placenta. 2011;32:391–4. https://doi.org/10.1016/j.placenta.2011.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mandò C, Calabrese S, Mazzocco MI, et al. Sex specific adaptations in placental biometry of overweight and obese women. Placenta. 2016;38:1–7. https://doi.org/10.1016/j.placenta.2015.12.008.

    Article  PubMed  Google Scholar 

  82. Muralimanoharan S, Gao X, Weintraub S, et al. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model. Autophagy. 2016;12:752–69. https://doi.org/10.1080/15548627.2016.1156822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ghidini A, Salafia CM. Gender differences of placental dysfunction in severe prematurity. BJOG An Int J Obstet Gynaecol. 2005;112:140–4. https://doi.org/10.1111/j.1471-0528.2004.00308.x.

    Article  Google Scholar 

  84. Chin EH, Schmidt KL, Martel KM, et al. A maternal high-fat, high-sucrose diet has sex-specific effects on fetal glucocorticoids with little consequence for offspring metabolism and voluntary locomotor activity in mice. PLoS ONE. 2017;12:e0174030. https://doi.org/10.1371/journal.pone.0174030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eaton M, Davies AH, Devine J, et al. Complex patterns of cell growth in the placenta in normal pregnancy and as adaptations to maternal diet restriction. PLoS ONE. 2020;15:e0226735. https://doi.org/10.1371/journal.pone.0226735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Phuthong S, Reyes-Hernandez CG, Rodriguez-Rodriguez P, et al. Sex differences in placental protein expression and efficiency in a rat model of fetal programming induced by maternal undernutrition. Int J Mol Sci. 2021;22:237. https://doi.org/10.3390/ijms22010237.

    Article  CAS  Google Scholar 

  87. Gao H, Sathishkumar KR, Yallampalli U, et al. Maternal protein restriction regulates IGF2 system in placental labyrinth. Front Biosci (Elite Ed). 2012;4:1434–50. https://doi.org/10.2741/472.

    Article  Google Scholar 

  88. Christians JK, Lennie KI, Huicochea Munoz MF, et al. PAPP-A2 deficiency does not exacerbate the phenotype of a mouse model of intrauterine growth restriction. Reprod Biol Endocrinol. 2018;16:58. https://doi.org/10.1186/s12958-018-0376-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bidne KL, Rister AL, McCain AR, et al. Maternal obesity alters placental lysophosphatidylcholines, lipid storage, and the expression of genes associated with lipid metabolism‡. Biol Reprod. 2021;104:197–210. https://doi.org/10.1093/biolre/ioaa191.

    Article  PubMed  Google Scholar 

  90. Denisova EI, Kozhevnikova VV, Bazhan NM, et al. Sex-specific effects of leptin administration to pregnant mice on the placentae and the metabolic phenotypes of offspring. FEBS Open Bio. 2020;10:96–106. https://doi.org/10.1002/2211-5463.12757.

    Article  CAS  PubMed  Google Scholar 

  91. Vickers MH, Clayton ZE, Yap C, et al. Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function. Endocrinology. 2011;152:1378–87. https://doi.org/10.1210/en.2010-1093.

    Article  CAS  PubMed  Google Scholar 

  92. Kalisch-Smith JI, Simmons DG, Pantaleon M, et al. Sex differences in rat placental development: from pre-implantation to late gestation. Biol Sex Differ. 2017;8:17. https://doi.org/10.1186/s13293-017-0138-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Christians JK, Grynspan D, Greenwood SL, et al. The problem with using the birthweight:placental weight ratio as a measure of placental efficiency. Placenta. 2018;68:52–8. https://doi.org/10.1016/j.placenta.2018.06.311.

    Article  PubMed  Google Scholar 

  94. Ishikawa H, Rattigan Á, Fundele R, et al. Effects of sex chromosome dosage on placental size in mice. Biol Reprod. 2003;69:483–8. https://doi.org/10.1095/biolreprod.102.012641.

    Article  CAS  PubMed  Google Scholar 

  95. Rosenfeld CS. Effects of maternal diet and exposure to bisphenol A on sexually dimorphic responses in conceptuses and offspring. Reprod Domest Anim. 2012;47:23–30. https://doi.org/10.1111/j.1439-0531.2012.02051.x.

    Article  PubMed  Google Scholar 

  96. Zambrano E, Bautista CJ, Deas M, et al. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol. 2006;571:221–30. https://doi.org/10.1113/jphysiol.2005.100313.

    Article  CAS  PubMed  Google Scholar 

  97. Christians JK, Shergill HK, Albert AYK. Sex-dependent effects of prenatal food and protein restriction on offspring physiology in rats and mice: systematic review and meta-analyses. Biol Sex Differ. 2021;12:21. https://doi.org/10.1186/s13293-021-00365-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goyal R, Wong C, Van Wickle J, et al. Antenatal maternal protein deprivation: sexually dimorphic programming of the pancreatic renin-angiotensin system. J Renin Angiotensin Aldosterone Syst. 2013;14:137–45. https://doi.org/10.1177/1470320312456329.

    Article  CAS  PubMed  Google Scholar 

  99. Van Gronigen CG, Storey KM, Parmeley LE, et al. Effects of maternal nutrient restriction during the periconceptional period on placental development in the mouse. PLoS ONE. 2021;16: e0244971. https://doi.org/10.1371/journal.pone.0244971.

    Article  CAS  Google Scholar 

  100. Harper JL, Caesar GA, Pennington KA, et al. Placental changes caused by food restriction during early pregnancy in mice are reversible. Reproduction. 2015;150:165–72. https://doi.org/10.1530/REP-15-0010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Barrett E, Loverin A, Wang H, et al. Uteroplacental insufficiency with hypoxia upregulates placental PPAR gamma-KMT5A axis in the rat. Reprod Sci. 2021;28:1476–88. https://doi.org/10.1007/s43032-020-00434-w.

    Article  CAS  PubMed  Google Scholar 

  102. Owens JA, Thavaneswaran P, De Blasio MJ, et al. Sex-specific effects of placental restriction on components of the metabolic syndrome in young adult sheep. Am J Physiol - Endocrinol Metab. 2007;292:E1879–89. https://doi.org/10.1152/ajpendo.00706.2006.

    Article  CAS  PubMed  Google Scholar 

  103. O’Connell BA, Moritz KM, Walker DW, et al. Sexually dimorphic placental development throughout gestation in the spiny mouse (Acomys cahirinus). Placenta. 2013;34:119–26. https://doi.org/10.1016/j.placenta.2012.11.009.

    Article  PubMed  Google Scholar 

  104. Rosario FJ, Jansson N, Kanai Y, et al. Maternal protein restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and down-regulates placental amino acid transporters. Endocrinology. 2011;152:1119–29.

    Article  CAS  Google Scholar 

  105. Sferruzzi-Perri AN, Vaughan OR, Coan PM, et al. Placental-specific Igf2 deficiency alters developmental adaptations to undernutrition in mice. Endocrinology. 2011;152:3202–12. https://doi.org/10.1210/en.2011-0240.

    Article  CAS  PubMed  Google Scholar 

  106. Kavitha JV, Rosario FJ, Nijland MJ, et al. Down-regulation of placental mTOR, insulin/IGF-I signaling, and nutrient transporters in response to maternal nutrient restriction in the baboon. FASEB J. 2014;28:1294–305. https://doi.org/10.1096/fj.13-242271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pantham P, Rosario FJ, Nijland M, et al. Reduced placental amino acid transport in response to maternal nutrient restriction in the baboon. Am J Physiol - Regul Integr Comp Physiol. 2015;309:R740–6. https://doi.org/10.1152/ajpregu.00161.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mangwiro YT, Briffa JF, Gravina S, et al. Maternal exercise and growth restriction in rats alters placental angiogenic factors and blood space area in a sex-specific manner. Placenta. 2018;74:47–54. https://doi.org/10.1016/j.placenta.2018.12.005.

    Article  CAS  PubMed  Google Scholar 

  109. Mangwiro YTM, Cuffe JSM, Mahizir D, et al. Exercise initiated during pregnancy in rats born growth restricted alters placental mTOR and nutrient transporter expression. J Physiol. 2019;597:1905–18. https://doi.org/10.1113/JP277227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cox LA, Li C, Glenn JP, et al. Expression of the placental transcriptome in maternal nutrient reduction in baboons is dependent on fetal sex. J Nutr. 2013;143:1698–708. https://doi.org/10.3945/jn.112.172148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen P-Y, Ganguly A, Rubbi L, et al. Intrauterine calorie restriction affects placental DNA methylation and gene expression. Physiol Genomics. 2013;45:565–76. https://doi.org/10.1152/physiolgenomics.00034.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Christians JK, Lennie KI, Wild LK, et al. Effects of high-fat diets on fetal growth in rodents: a systematic review. Reprod Biol Endocrinol. 2019;17:39. https://doi.org/10.1186/s12958-019-0482-y.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lin Y-J, Huang L-T, Tsai C-C, et al. Maternal high-fat diet sex-specifically alters placental morphology and transcriptome in rats: assessment by next-generation sequencing. Placenta. 2019;78:44–53. https://doi.org/10.1016/j.placenta.2019.03.004.

    Article  CAS  PubMed  Google Scholar 

  114. de Barros MD, Kusinski LC, Wilsmore P, et al. Impact of maternal obesity on placental transcriptome and morphology associated with fetal growth restriction in mice. Int J Obes. 2020;44:1087–96. https://doi.org/10.1038/s41366-020-0561-3.

    Article  Google Scholar 

  115. Reynolds CM, Vickers MH, Harrison CJ, et al. Maternal high fat and/or salt consumption induces sex-specific inflammatory and nutrient transport in the rat placenta. Physiol Rep. 2015;3:e12399. https://doi.org/10.14814/phy2.12399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tarrade A, Rousseau-Ralliard D, Aubrière MC, et al. Sexual dimorphism of the feto-placental phenotype in response to a high fat and control maternal diets in a rabbit model. PLoS ONE. 2013;8:e83458. https://doi.org/10.1371/journal.pone.0083458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim DW, Young SL, Grattan DR, et al. Obesity During pregnancy disrupts placental morphology, cell proliferation, and inflammation in a sex-specific manner across gestation in the mouse. Biol Reprod. 2014;90:130. https://doi.org/10.1095/biolreprod.113.117259.

    Article  CAS  PubMed  Google Scholar 

  118. Gabory A, Ferry L, Fajardy I, et al. Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. PLoS ONE. 2012;7:e47986–e47986. https://doi.org/10.1371/journal.pone.0047986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mao J, Zhang X, Sieli PT, et al. Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc Natl Acad Sci U S A. 2010;107:5557–62.

    Article  CAS  Google Scholar 

  120. Barke TL, Money KM, Du L, et al. Sex modifies placental gene expression in response to metabolic and inflammatory stress. Placenta. 2019;78:1–9. https://doi.org/10.1016/j.placenta.2019.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Reyes-Hernandez CG, Ramiro-Cortijo D, Rodriguez-Rodriguez P, et al. Effects of Arachidonic and docosohexahenoic acid supplementation during gestation in rats. implication of placental oxidative stress. Int J Mol Sci. 2018;19:3863. https://doi.org/10.3390/ijms19123863.

    Article  CAS  PubMed Central  Google Scholar 

  122. Claycombe-Larson KG, Bundy AN, Roemmich JN. Paternal high-fat diet and exercise regulate sperm miRNA and histone methylation to modify placental inflammation, nutrient transporter mRNA expression and fetal weight in a sex-dependent manner. J Nutr Biochem. 2020;81: 108373. https://doi.org/10.1016/j.jnutbio.2020.108373.

    Article  CAS  PubMed  Google Scholar 

  123. Nugent BM, Bale TL. The omniscient placenta: metabolic and epigenetic regulation of fetal programming. Front Neuroendocrinol. 2015;39:28–37. https://doi.org/10.1016/j.yfrne.2015.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kelly AC, Kramer A, Rosario FJ, et al. Inhibition of mechanistic target of rapamycin signaling decreases levels of O-GlcNAc transferase and increases serotonin release in the human placenta. Clin Sci. 2020;134:3123–36. https://doi.org/10.1042/CS20201050.

    Article  CAS  Google Scholar 

  125. Nugent BM, O’Donnell CM, Epperson CN, et al. Placental H3K27me3 establishes female resilience to prenatal insults. Nat Commun. 2018;9:2555. https://doi.org/10.1038/s41467-018-04992-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hardivillé S, Hart GW. Nutrient regulation of signaling, transcription, and cell physiology by O- GlcNAcylation. Cell Metab. 2014;20:208–13. https://doi.org/10.1016/j.cmet.2014.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hart B, Morgan E, Alejandro EU. Nutrient sensor signaling pathways and cellular stress in fetal growth restriction. J Mol Endocrinol. 2019;62:R155–65. https://doi.org/10.1530/JME-18-0059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Howerton CL, Bale TL. Targeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction. Proc Natl Acad Sci U S A. 2014;111:9639–44. https://doi.org/10.1073/pnas.1401203111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Van Abeelen AFM, De Rooij SR, Osmond C, et al. The sex-specific effects of famine on the association between placental size and later hypertension. Placenta. 2011;32:694–8. https://doi.org/10.1016/j.placenta.2011.06.012.

    Article  PubMed  Google Scholar 

  130. Gaccioli F, Lager S, Powell TL, et al. Placental transport in response to altered maternal nutrition. J Dev Orig Health Dis. 2013;4:101–15. https://doi.org/10.1017/S2040174412000529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jansson T, Powell TL. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? A review Placenta. 2006;27:S91–7.

    Article  Google Scholar 

  132. Walker N, Filis P, Soffientini U, et al. Placental transporter localization and expression in the Human: the importance of species, sex, and gestational age differences. Biol Reprod. 2017;96:733–42. https://doi.org/10.1093/biolre/iox012.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sen S, Carpenter AH, Hochstadt J, et al. Nutrition, weight gain and eating behavior in pregnancy: a review of experimental evidence for long-term effects on the risk of obesity in offspring. Physiol Behav. 2012;107:138–45. https://doi.org/10.1016/j.physbeh.2012.04.014.

    Article  CAS  PubMed  Google Scholar 

  134. Yu Z, Han S, Zhu J, et al. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS ONE. 2013;8: e61627. https://doi.org/10.1371/journal.pone.0061627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Brass E, Hanson E, O’Tierney-Ginn PF. Placental oleic acid uptake is lower in male offspring of obese women. Placenta. 2013;34:503–9. https://doi.org/10.1016/j.placenta.2013.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal development. Reproduction. 2017;153:R97–108. https://doi.org/10.1530/REP-16-0495.

    Article  CAS  PubMed  Google Scholar 

  137. Castillo-Castrejon M, Powell TL. Placental nutrient transport in gestational diabetic pregnancies. Front Endocrinol. 2017;8:306. https://doi.org/10.3389/fendo.2017.00306.

    Article  Google Scholar 

  138. Brett KE, Ferraro ZM, Holcik M, et al. Placenta nutrient transport-related gene expression: the impact of maternal obesity and excessive gestational weight gain. J Matern neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2016;29:1399–405. https://doi.org/10.3109/14767058.2015.1049522.

    Article  CAS  Google Scholar 

  139. Walker SP, Ugoni AM, Lim R, et al. Inverse relationship between gestational weight gain and glucose uptake in human placenta from female foetuses. Pediatr Obes. 2014;9:e73–6. https://doi.org/10.1111/j.2047-6310.2013.00206.x.

    Article  CAS  PubMed  Google Scholar 

  140. Powell TL, Barner K, Madi L, et al. Sex-specific responses in placental fatty acid oxidation, esterification and transfer capacity to maternal obesity. Biochim Biophys ACTA-Molecular Cell Biol Lipids. 2021;1866:158861. https://doi.org/10.1016/j.bbalip.2020.158861.

    Article  CAS  Google Scholar 

  141. Yang H, He B, Yallampalli C, et al. Fetal macrosomia in a Hispanic/Latinx predominant cohort and altered expressions of genes related to placental lipid transport and metabolism. Int J Obes (Lond). 2020;44:1743–52. https://doi.org/10.1038/s41366-020-0610-y.

    Article  CAS  Google Scholar 

  142. Muralimanoharan S, Guo C, Myatt L, et al. Sexual dimorphism in MIR-210 expression and mitochondrial dysfunction in the placenta with maternal obesity. Int J Obes. 2015;39:1274–81. https://doi.org/10.1038/ijo.2015.45.

    Article  CAS  Google Scholar 

  143. Myatt L, Maloyan A. Obesity and Placental Function. Semin Reprod Med. 2016;34:42–9. https://doi.org/10.1055/s-0035-1570027.

    Article  CAS  PubMed  Google Scholar 

  144. Prince CS, Maloyan A, Myatt L. Maternal obesity alters brain derived neurotrophic factor (BDNF) signaling in the placenta in a sexually dimorphic manner. Placenta. 2017;49:55–63. https://doi.org/10.1016/j.placenta.2016.11.010.

    Article  CAS  PubMed  Google Scholar 

  145. Evans LS, Myatt L. Sexual dimorphism in the effect of maternal obesity on antioxidant defense mechanisms in the human placenta. Placenta. 2017;51:64–9. https://doi.org/10.1016/j.placenta.2017.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Saoi M, Kennedy KM, Gohir W, et al. Placental metabolomics for assessment of sex-specific differences in fetal development during normal gestation. Sci Rep. 2020;10:9399. https://doi.org/10.1038/s41598-020-66222-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Maliqueo M, Cruz G, Espina C, et al. Obesity during pregnancy affects sex steroid concentrations depending on fetal gender. Int J Obes. 2017;41:1636–45. https://doi.org/10.1038/ijo.2017.159.

    Article  CAS  Google Scholar 

  148. Knabl J, de Maiziere L, Hüttenbrenner R, et al. Cell type-and sex-specific dysregulation of thyroid hormone receptors in placentas in gestational diabetes mellitus. Int J Mol Sci. 2020;21:4056. https://doi.org/10.3390/ijms21114056.

    Article  CAS  PubMed Central  Google Scholar 

  149. Strutz J, Cvitic S, Hackl H, et al. Gestational diabetes alters microRNA signatures in human feto-placental endothelial cells depending on fetal sex. Clin Sci (Lond). 2018;132:2437–49. https://doi.org/10.1042/CS20180825.

    Article  CAS  Google Scholar 

  150. Sedlmeier E-M, Brunner S, Much D, et al. Human placental transcriptome shows sexually dimorphic gene expression and responsiveness to maternal dietary n-3 long-chain polyunsaturated fatty acid intervention during pregnancy. BMC Genomics. 2014;15:941. https://doi.org/10.1186/1471-2164-15-941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sedlmeier E-M, Meyer DM, Stecher L, et al. Fetal sex modulates placental microRNA expression, potential microRNA-mRNA interactions, and levels of amino acid transporter expression and substrates: INFAT study subpopulation analysis of n-3 LCPUFA intervention during pregnancy and associations with offspring body composition. BMC Mol cell Biol. 2021;22:15. https://doi.org/10.1186/s12860-021-00345-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mayhew TM, Sorensen FB, Klebe JG, et al. The effects of mode of delivery and sex of newborn on placental morphology in control and diabetic pregnancies. J Anat. 1993;183:545–52.

    PubMed  PubMed Central  Google Scholar 

  153. Barapatre N, Haeussner E, Grynspan D, et al. The density of cell nuclei at the materno-fetal exchange barrier is sexually dimorphic in normal placentas, but not in IUGR. Sci Rep. 2019;9:2359. https://doi.org/10.1038/s41598-019-38739-9.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Christians JK, Grynspan D. Placental villous hypermaturation is associated with improved neonatal outcomes. Placenta. 2019;76:1–5. https://doi.org/10.1016/j.placenta.2019.01.012.

    Article  PubMed  Google Scholar 

  155. Wright E, Audette MC, Ye XY, et al. Maternal vascular malperfusion and adverse perinatal outcomes in low-risk nulliparous women. Obstet Gynecol. 2017;130:1112–20. https://doi.org/10.1097/AOG.0000000000002264.

    Article  PubMed  Google Scholar 

  156. Muralimanoharan S, Maloyan A, Myatt L. Evidence of sexual dimorphism in the placental function with severe preeclampsia. Placenta. 2013;34:1183–9. https://doi.org/10.1016/j.placenta.2013.09.015.

    Article  CAS  PubMed  Google Scholar 

  157. Walker MG, Fitzgerald B, Keating S, et al. Sex-specific basis of severe placental dysfunction leading to extreme preterm delivery. Placenta. 2012;33:568–71. https://doi.org/10.1016/j.placenta.2012.03.011.

    Article  CAS  PubMed  Google Scholar 

  158. Tamayev L, Schreiber L, Marciano A, et al. Are there gender-specific differences in pregnancy outcome and placental abnormalities of pregnancies complicated with small for gestational age? Arch Gynecol Obstet. 2020;301:1147–51. https://doi.org/10.1007/s00404-020-05514-5.

    Article  CAS  PubMed  Google Scholar 

  159. Leon-Garcia SM, Roeder HA, Nelson KK, et al. Maternal obesity and sex-specific differences in placental pathology. Placenta. 2016;38:33–40. https://doi.org/10.1016/j.placenta.2015.12.006.

    Article  PubMed  Google Scholar 

  160. Jahanfar S, Lim K. Is there a relationship between fetal sex and placental pathological characteristics in twin gestations? BMC Pregnancy Childbirth. 2018;18:285. https://doi.org/10.1186/s12884-018-1896-9.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Paquette AG, Brockway HM, Price ND, et al. Comparative transcriptomic analysis of human placentae at term and preterm delivery. Biol Reprod. 2017;98:89–101. https://doi.org/10.1093/biolre/iox163.

    Article  PubMed Central  Google Scholar 

  162. Broere-Brown ZA, Schalekamp-Timmermans S, Hofman A, et al. Fetal sex dependency of maternal vascular adaptation to pregnancy: a prospective population-based cohort study. BJOG An Int J Obstet Gynaecol. 2016;123:1087–95. https://doi.org/10.1111/1471-0528.13519.

    Article  CAS  Google Scholar 

  163. Teulings NEWD, Wood AM, Sovio U, et al. Independent influences of maternal obesity and fetal sex on maternal cardiovascular adaptation to pregnancy: a prospective cohort study. Int J Obes. 2020;44:2246–55. https://doi.org/10.1038/s41366-020-0627-2.

    Article  Google Scholar 

  164. Widnes C, Flo K, Acharya G. Exploring sexual dimorphism in placental circulation at 22–24 weeks of gestation: A cross-sectional observational study. Placenta. 2017;49:16–22. https://doi.org/10.1016/j.placenta.2016.11.005.

    Article  PubMed  Google Scholar 

  165. Widnes C, Flo K, Wilsgaard T, et al. Sex differences in umbilical artery Doppler indices: A longitudinal study. Biol Sex Differ. 2018;9:16. https://doi.org/10.1186/s13293-018-0174-x.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Jagota D, George H, Walker M, et al. Sex differences in fetal Doppler parameters during gestation. Biol Sex Differ. 2021;12:26. https://doi.org/10.1186/s13293-021-00370-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Paranavitana L, Walker M, Chandran AR, et al. Sex differences in uterine artery Doppler during gestation in pregnancies complicated by placental dysfunction. Biol Sex Differ. 2021;12:19. https://doi.org/10.1186/s13293-021-00362-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hebert JF, Millar JA, Raghavan R, et al. Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model. Biol Reprod. 2021;104:924–34. https://doi.org/10.1093/biolre/ioab006.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Stojanovska V, Dijkstra DJ, Vogtmann R, et al. A double-hit pre-eclampsia model results in sex-specific growth restriction patterns. Dis Model Mech. 2019;12:dmm035980. https://doi.org/10.1242/dmm.035980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chin EH, Christians JK. When are sex-specific effects really sex-specific? J Dev Orig Health Dis. 2015;6:438–42. https://doi.org/10.1017/S2040174415001348.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by a Natural Sciences and Engineering Research Council of Canada Discovery Grant (JKC; grant number RGPIN-2016–04047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian K. Christians.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christians, J.K. The Placenta’s Role in Sexually Dimorphic Fetal Growth Strategies. Reprod. Sci. 29, 1895–1907 (2022). https://doi.org/10.1007/s43032-021-00780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00780-3

Keywords

Navigation