Mir-let-7a/g Enhances Uterine Receptivity via Suppressing Wnt/β-Catenin Under the Modulation of Ovarian Hormones


Microarray has indicated a huge number of miRNAs exist in reproductive tissues and cells. Moreover, the expression of miRNA in the reproductive system varies under the strict monitoring of different regulations. To understand the role of miRNA-mediated post-transcriptional gene regulation in female reproduction, we investigated the level and function of a mir-let-7 family member in both mice and human uterine receptivity. As we observed, mir-let-7 a/g had a higher expression in mouse and human receptive uterine epithelium; the level of mir-let-7a was under the inverse regulation of estrogen and progesterone; upregulated mir-let-7a/g in mouse and human uterine epithelium increased uterine receptivity, thus improved implantation-related embryo attachment and outgrowth ability; the let-7a/g enhanced uterine receptivity through suppressing canonical Wnt signaling. In summary, our findings suggest that mir-let-7 a/g increases uterine receptivity via inhibiting Wnt signaling and under the modulation of ovarian hormones.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 510

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Yuan DZ, et al. Identification and characterization of progesterone- and estrogen-regulated MicroRNAs in mouse endometrial epithelial cells. Reprod Sci. 2015;22(2):223–34.

  2. 2.

    Huet-Hudson YM, Andrews GK, Dey SK. Cell type-specific localization of c-myc protein in the mouse uterus: modulation by steroid hormones and analysis of the periimplantation period. Endocrinology. 1989;125(3):1683–90.

  3. 3.

    Paria BC, Huet-Hudson YM, Dey SK. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci U S A. 1993;90(21):10159–62.

  4. 4.

    Matsumoto H. Molecular and cellular events during blastocyst implantation in the receptive uterus: clues from mouse models. J Reprod Dev. 2017;63(5):445–54.

  5. 5.

    Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132(1):9–14.

  6. 6.

    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102–14.

  7. 7.

    Tang F, et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007;21(6):644–8.

  8. 8.

    Bahrami A, et al. miRNA-mRNA network involved in folliculogenesis interactome: systems biology approach. Reproduction. 2017;154(1):51–65.

  9. 9.

    Liang J, Wang S, Wang Z. Role of microRNAs in embryo implantation. Reprod Biol Endocrinol. 2017;15(1):90.

  10. 10.

    Laurent LC. MicroRNAs in embryonic stem cells and early embryonic development. J Cell Mol Med. 2008;12(6A):2181–8.

  11. 11.

    Pasquinelli AE, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86–9.

  12. 12.

    Hertel J, et al. Evolution of the let-7 microRNA family. RNA Biol. 2012;9(3):231–41.

  13. 13.

    Landgraf P, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.

  14. 14.

    Lagos-Quintana M, et al. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.

  15. 15.

    Liu WM, et al. Involvement of microRNA lethal-7a in the regulation of embryo implantation in mice. PLoS One. 2012;7(5):e37039.

  16. 16.

    Xia HF, et al. Temporal and spatial regulation of let-7a in the uterus during embryo implantation in the rat. J Reprod Dev. 2010;56(1):73–8.

  17. 17.

    Wang Y, et al. MicroRNA profiles in spontaneous decidualized menstrual endometrium and early pregnancy decidua with successfully implanted embryos. PLoS One. 2016;11(1):e0143116.

  18. 18.

    Ramathal CY, et al. Endometrial decidualization: of mice and men. Semin Reprod Med. 2010;28(1):17–26.

  19. 19.

    Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

  20. 20.

    Liu C, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108(6):837–47.

  21. 21.

    Morin PJ, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275(5307):1787–90.

  22. 22.

    Korinek V, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997;275(5307):1784–7.

  23. 23.

    Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14(15):1837–51.

  24. 24.

    Takemaru KI, Moon RT. The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol. 2000;149(2):249–54.

  25. 25.

    Hecht A, et al. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J. 2000;19(8):1839–50.

  26. 26.

    Cai H, et al. Let7b modulates the Wnt/beta-catenin pathway in liver cancer cells via downregulated Frizzled4. Tumour Biol. 2017;39(7):1010428317716076.

  27. 27.

    Sun X, et al. Let-7c blocks estrogen-activated Wnt signaling in induction of self-renewal of breast cancer stem cells. Cancer Gene Ther. 2016;23(4):83–9.

  28. 28.

    Zhu H, et al. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011;147(1):81–94.

  29. 29.

    Cheng TC, et al. Evaluation of mouse blastocyst implantation rate by morphology grading. Chin J Phys. 2004;47(1):43–7.

  30. 30.

    Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70(6):1738–50.

  31. 31.

    Ebrahimi-Barough S, et al. Differentiation of human endometrial stromal cells into oligodendrocyte progenitor cells (OPCs). J Mol Neurosci. 2013;51(2):265–73.

  32. 32.

    Duan ZY, et al. U6 can be used as a housekeeping gene for urinary sediment miRNA studies of IgA nephropathy. Sci Rep. 2018;8(1):10875.

  33. 33.

    Crossland RE, et al. Evaluation of optimal extracellular vesicle small RNA isolation and qRT-PCR normalisation for serum and urine. J Immunol Methods. 2016;429:39–49.

  34. 34.

    Pang RT, et al. MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis. 2010;31(6):1037–44.

  35. 35.

    Deb K, Reese J, Paria BC. Methodologies to study implantation in mice. Methods Mol Med. 2006;121:9–34.

  36. 36.

    Altmae S, et al. MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod Sci. 2013;20(3):308–17.

  37. 37.

    Weimar CH, et al. In-vitro model systems for the study of human embryo-endometrium interactions. Reprod BioMed Online. 2013;27(5):461–76.

  38. 38.

    Harduf H, Goldman S, Shalev E. Human uterine epithelial RL95-2 and HEC-1A cell-line adhesiveness: the role of plexin B1. Fertil Steril. 2007;87(6):1419–27.

  39. 39.

    Bhagwat SR, et al. Endometrial receptivity: a revisit to functional genomics studies on human endometrium and creation of HGEx-ERdb. PLoS One. 2013;8(3):e58419.

  40. 40.

    Rahnama F, et al. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology. 2009;150(3):1466–72.

  41. 41.

    Ho H, et al. A high-throughput in vitro model of human embryo attachment. Fertil Steril. 2012;97(4):974–8.

  42. 42.

    Somkuti SG, et al. Epidermal growth factor and sex steroids dynamically regulate a marker of endometrial receptivity in Ishikawa cells. J Clin Endocrinol Metab. 1997;82(7):2192–7.

  43. 43.

    Kuokkanen S, et al. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82(4):791–801.

  44. 44.

    Nei H, et al. Nuclear localization of beta-catenin in normal and carcinogenic endometrium. Mol Carcinog. 1999;25(3):207–18.

  45. 45.

    Wang J, Mayernik L, Armant DR. Trophoblast adhesion of the peri-implantation mouse blastocyst is regulated by integrin signaling that targets phospholipase C. Dev Biol. 2007;302(1):143–53.

  46. 46.

    Xie H, et al. Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development. 2008;135(4):717–27.

  47. 47.

    Li R, et al. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod Biol Endocrinol. 2011;9:29.

  48. 48.

    Xia HF, et al. MicroRNA expression and regulation in the uterus during embryo implantation in rat. FEBS J. 2014;281(7):1872–91.

  49. 49.

    Chakrabarty A, et al. MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci U S A. 2007;104(38):15144–9.

  50. 50.

    Hu SJ, et al. MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem. 2008;283(34):23473–84.

  51. 51.

    Lee H, et al. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell. 2016;7(2):100–13.

  52. 52.

    Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016;99:141–9.

  53. 53.

    Wang Y, et al. Let-7b contributes to hepatocellular cancer progression through Wnt/beta-catenin signaling. Saudi J Biol Sci. 2018;25(5):953–8.

  54. 54.

    Inyawilert W, et al. Let-7-mediated suppression of mucin 1 expression in the mouse uterus during embryo implantation. J Reprod Dev. 2015;61(2):138–44.

  55. 55.

    Cho S, et al. Circulating microRNAs as potential biomarkers for endometriosis. Fertil Steril. 2015;103(5):1252–60 e1.

  56. 56.

    Cho S, et al. Aromatase inhibitor regulates let-7 expression and let-7f-induced cell migration in endometrial cells from women with endometriosis. Fertil Steril. 2016;106(3):673–80.

  57. 57.

    Sahin C, et al. microRNA Let-7b: a novel treatment for endometriosis. J Cell Mol Med. 2018;22(11):5346–53.

Download references


We are sincerely grateful to Prof. George Q. Daley of Harvard Stem Cell Institute for providing ES cells carrying a let-7g Stem/mir-21loop sequence, and all the reviewers for their helpful comments on this article, and those who offer kind help during the whole project.

Author information

Correspondence to Weimin LIU.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

LI, Q., LIU, W., CHIU, P.C. et al. Mir-let-7a/g Enhances Uterine Receptivity via Suppressing Wnt/β-Catenin Under the Modulation of Ovarian Hormones. Reprod. Sci. (2020) doi:10.1007/s43032-019-00115-3

Download citation


  • Mir-let-7a/g
  • Uterine receptivity
  • Estrogen
  • Progesterone
  • Wnt/β-catenin signaling