Skip to main content
Log in

The Use of Antibody Arrays in the Discovery of New Plasma Biomarkers for Endometriosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

A noninvasive diagnostic test for endometriosis is needed to shorten the current diagnostic delay of 8–11 years. The goal of this study was to discover new biomarkers for endometriosis using an antibody array approach. A total of 103 plasma samples from patients with laparoscopically confirmed presence (n = 68) or absence (n = 35) of endometriosis were selected. Samples were pooled according to disease status, cycle phase, disease stage, and phenotype. Pooled samples were screened for possible biomarkers using the L-series 1000 and Quantibody 660 arrays from RayBiotech. Technical verification of ten markers was done using a custom-made multiplex immunoassay identifying ten proteins (10-plex) and later by single ELISA. Due to the limited reproducibility of the L-series 1000 immunoassay, the biomarker screening was performed using the Quantibody 660, a sandwich-based multiplex immunoassay, which showed that 280 proteins were upregulated, and 29 proteins downregulated in the endometriosis pool versus the control pool. In order to assess the reproducibility of these results, ten preselected proteins were analyzed using a custom 10-plex. Four proteins (CD48, DNAM-1, IL-31, and XIAP) were confirmed to be differentially expressed when comparing the endometriosis and control pool. However, only IL-31 showed a univariate statistical difference between endometriosis and control groups in individual samples that were part of the initial pools. In conclusion, discovery and verification of potential markers proved challenging using multiplex immunoassay methods, mainly due to issues with reproducibility. Only IL-31 showed potential as possible biomarker for endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–99.

    Article  PubMed  Google Scholar 

  2. ASRM. Revised ASRM classification for endometriosis: 1996. Fertil Steril. 1997;67:820.

    Google Scholar 

  3. Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. 1997;68(4):585–96.

    Article  CAS  PubMed  Google Scholar 

  4. Aghajanova L, Giudice LC. Molecular evidence for differences in endometrium in severe versus mild endometriosis. Reprod Sci. 2011;18(3):229–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dunselman GA, Vermeulen N, Becker C, Calhaz-Jorge C, D'Hooghe T, de Bie B, et al. ESHRE guideline: management of women with endometriosis. Hum Reprod. 2014;29(3):400–12.

    Article  CAS  PubMed  Google Scholar 

  6. Kennedy S, Bergqvist A, Chapron C, D'Hooghe T, Dunselman G, Greb R, et al. ESHRE guideline for the diagnosis and treatment of endometriosis. Hum Reprod. 2005;20(10):2698–704.

    Article  PubMed  Google Scholar 

  7. Husby GK, Haugen RS, Moen MH. Diagnostic delay in women with pain and endometriosis. Acta Obstet Gynecol Scand. 2003;82(7):649–53.

    Article  PubMed  Google Scholar 

  8. May KE, Conduit-Hulbert SA, Villar J, Kirtley S, Kennedy SH, Becker CM. Peripheral biomarkers of endometriosis: a systematic review. Hum Reprod Update. 2010;16(6):651–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nisenblat V, Bossuyt PM, Shaikh R, et al. Blood biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst Rev. 2016;5:CD012179.

    Google Scholar 

  10. Rogers PA, Adamson GD, Al-Jefout M, et al. Research priorities for endometriosis. Reprod Sci. 2017;24(2):202–26.

    Article  PubMed  Google Scholar 

  11. O DF, Flores I, Waelkens E, D'Hooghe T. Noninvasive diagnosis of endometriosis: Review of current peripheral blood and endometrial biomarkers. Best Pract Res Clin Obstet Gynaecol. 2018.

  12. Templin MF, Stoll D, Schwenk JM, Potz O, Kramer S, Joos TO. Protein microarrays: promising tools for proteomic research. Proteomics. 2003;3(11):2155–66.

    Article  CAS  PubMed  Google Scholar 

  13. Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NS, Kuchel GA. ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci. 2008;63(8):879–84.

    Article  PubMed  Google Scholar 

  14. Huang RP, Burkholder B, Jones VS, et al. Cytokine antibody arrays in biomarker discovery and validation. Curr Proteomics. 2012;9(1):55–70.

    Article  CAS  Google Scholar 

  15. Kingsmore SF. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov. 2006;5(4):310–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O DF, El Aalamat Y, Waelkens E, De Moor B, D'Hooghe T, Fassbender A. Multiplex immunoassays in endometriosis: An array of possibilities. Front Biosci (Landmark Ed). 2017;22:479–92.

    Article  Google Scholar 

  17. Fassbender A, Vodolazkaia A, Saunders P, Lebovic D, Waelkens E, de Moor B, et al. Biomarkers of endometriosis. Fertil Steril. 2013;99(4):1135–45.

    Article  CAS  PubMed  Google Scholar 

  18. Kendziorski C, Irizarry RA, Chen KS, Haag JD, Gould MN. On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci U S A. 2005;102(12):4252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hou Z, Sun L, Gao L, Liao L, Mao Y, Liu J. Cytokine array analysis of peritoneal fluid between women with endometriosis of different stages and those without endometriosis. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals. 2009;14(8):604–18.

    Article  CAS  Google Scholar 

  20. D'Hooghe TM, Mihalyi AM, Simsa P, Kyama CK, Peeraer K, de Loecker P, et al. Why we need a noninvasive diagnostic test for minimal to mild endometriosis with a high sensitivity. Gynecol Obstet Investig. 2006;62(3):136–8.

    Article  CAS  Google Scholar 

  21. Diz AP, Truebano M, Skibinski DO. The consequences of sample pooling in proteomics: an empirical study. Electrophoresis. 2009;30(17):2967–75.

    Article  CAS  PubMed  Google Scholar 

  22. Heegaard NH, Ostergaard O, Bahl JM, et al. Important options available--from start to finish--for translating proteomics results to clinical chemistry. Proteomics Clin Appl. 2015;9(1–2):235–52.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang H, Zhang L, Yu Y, Liu M, Jin X, Zhang P, et al. A pilot study of angiogenin in heart failure with preserved ejection fraction: a novel potential biomarker for diagnosis and prognosis? J Cell Mol Med. 2014;18(11):2189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Browne AS, Yu J, Huang RP, Francisco AM, Sidell N, Taylor RN. Proteomic identification of neurotrophins in the eutopic endometrium of women with endometriosis. Fertil Steril. 2012;98(3):713–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ting L, Cowley MJ, Hoon SL, Guilhaus M, Raftery MJ, Cavicchioli R. Normalization and statistical analysis of quantitative proteomics data generated by metabolic labeling. Mol Cell Proteomics. 2009;8(10):2227–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gusnanto A, Calza S, Pawitan Y. Identification of differentially expressed genes and false discovery rate in microarray studies. Curr Opin Lipidol. 2007;18(2):187–93.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev. 2008;19(5–6):347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeng X, Zhang Z, Gao QQ, et al. Clinical significance of serum Interleukin-31 and Interleukin-33 levels in patients of endometrial Cancer: a case control study. Dis Markers. 2016;2016:9262919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang R, Jiang W, Yang J, Mao YQ, Zhang Y, Yang W, et al. A biotin label-based antibody array for high-content profiling of protein expression. Cancer Genomics Proteomics. 2010;7(3):129–41.

    CAS  PubMed  Google Scholar 

  30. Toh HC, Wang WW, Chia WK, Kvistborg P, Sun L, Teo K, et al. Clinical benefit of allogeneic melanoma cell lysate-pulsed autologous dendritic cell vaccine in MAGE-positive colorectal Cancer patients. Clin Cancer Res. 2009;15(24):7726–36.

    Article  CAS  PubMed  Google Scholar 

  31. Torres C, Linares A, Alejandre MJ, et al. Prognosis relevance of serum cytokines in pancreatic Cancer. Biomed Res Int. 2015;2015:518284.

    PubMed  PubMed Central  Google Scholar 

  32. Wang WW, Ang SF, Kumar R, Heah C, Utama A, Tania NP, et al. Identification of serum monocyte chemoattractant protein-1 and prolactin as potential tumor markers in hepatocellular carcinoma. PLoS One. 2013;8(7):e68904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vargas-Inchaustegui DA, Hogg AE, Tulliano G, Llanos-Cuentas A, Arevalo J, Endsley JJ, et al. CXCL10 production by human monocytes in response to Leishmania braziliensis infection. Infect Immun. 2010;78(1):301–8.

    Article  CAS  PubMed  Google Scholar 

  34. Mahlknecht P, Stemberger S, Sprenger F, Rainer J, Hametner E, Kirchmair R, et al. An antibody microarray analysis of serum cytokines in neurodegenerative Parkinsonian syndromes. Proteome Sci. 2012;10(1):71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bjorkqvist M, Ohlsson M, Minthon L, Hansson O. Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer's disease. PLoS One. 2012;7(1):e29868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen Z, Dodig-Crnkovic T, Schwenk JM, Tao SC. Current applications of antibody microarrays. Clin Proteomics. 2018;15:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arellano-Garcia ME, Hu S, Wang J, Henson B, Zhou H, Chia D, et al. Multiplexed immunobead-based assay for detection of oral cancer protein biomarkers in saliva. Oral Dis. 2008;14(8):705–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tighe PJ, Ryder RR, Todd I, Fairclough LC. ELISA in the multiplex era: potentials and pitfalls. Proteomics Clin Appl. 2015;9(3–4):406–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haab BB. Methods and applications of antibody microarrays in cancer research. Proteomics. 2003;3(11):2116–22.

    Article  CAS  PubMed  Google Scholar 

  40. Wellhausen R, Seitz H. Facing current quantification challenges in protein microarrays. J Biomed Biotechnol. 2012;2012:831347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu WG, Thompson HG, Alvi AZ, Nagata LP, Suresh MR, Fulton RE. Development of immunofiltration assay by light addressable potentiometric sensor with genetically biotinylated recombinant antibody for rapid identification of Venezuelan equine encephalitis virus. J Immunol Methods. 2004;289(1–2):27–35.

    Article  CAS  PubMed  Google Scholar 

  42. Voskuil J. How difficult is the validation of clinical biomarkers? F1000Res. 2015;4:101.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bielohuby M, Bidlingmaier M, Schwahn U. Control of (pre)-analytical aspects in immunoassay measurements of metabolic hormones in rodents. Endocr Connect. 2018;7(4):R147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vos SJ, Visser PJ, Verhey F, Aalten P, Knol D, Ramakers I, et al. Variability of CSF Alzheimer's disease biomarkers: implications for clinical practice. PLoS One. 2014;9(6):e100784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ana Arraztio (TebuBio) and the staff of RayBiotech, in particular Jarad Wilson (RayBiotech), for excellent technical support; M. Welkenhuysen for acquiring patient consent; G. Vriens, C. Tomassetti, C. Meuleman and K. Peeraer for their contributions to the sample collection; all patients who have given consent for sample collection.

Funding

Grant support: Funding of this research was obtained from the Research Foundation-Flanders (FWO, application number 11X5515N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D’Hooghe.

Ethics declarations

Conflict of Interest

Prof Dr. Thomas D’Hooghe is Vice President and Head Global Medical Affairs Fertility, Research and Development, Merck KGaA, Darmstadt, Germany. He is also a Professor in Reproductive Medicine and Biology at the Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven (University of Leuven), Belgium, and an Adjunct Professor at the Department of Obstetrics and Gynecology in the University of Yale, New Haven, USA. Neither his corporate role nor his academic roles represent a conflict of interest with respect to the work done by him for this study.

Additional information

Amelie Fassbender Thomas D’Hooghe should be regarded as joint last authors

Electronic Supplementary Material

ESM1

(JPG 113 kb)

ESM2

(DTD 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O, D., Waelkens, E., Vanhie, A. et al. The Use of Antibody Arrays in the Discovery of New Plasma Biomarkers for Endometriosis. Reprod. Sci. 27, 751–762 (2020). https://doi.org/10.1007/s43032-019-00081-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-019-00081-w

Keywords

Navigation