Skip to main content
Log in

Skeletal Muscle Fiber Type and Morphology in a Middle-Aged Elite Male Powerlifter Using Anabolic Steroids

  • Original Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Powerlifting regularly exposes athletes to extreme stimuli such as chronic heavy resistance training (HRT), and many powerlifters choose to augment their performance with anabolic–androgenic steroids (AAS). However, little is known about the myocellular adaptations that occur from long-term HRT and AAS use, especially into middle age. We were presented with the unique opportunity to study muscle cells from an elite-level powerlifter (EPL; age 40 years) with ≥ 30 years of HRT experience and ≥ 15 years of AAS use. The purpose of this case study was to identify myocellular characteristics [myosin heavy chain (MHC) fiber type, fiber size, and myonuclear content] in EPL, as well as compare these data to existing literature. The participant underwent a resting vastus lateralis muscle biopsy and single fibers were analyzed for MHC content via SDS-PAGE. A subset of fibers underwent MHC-specific imaging analysis via confocal microscopy to identify cell size (cross-sectional area, CSA) and myonuclear domain (MND) size. MHC fiber type distribution was 9% I, 12% I/IIa, 79% IIa, and 0% other isoforms. This pure MHC IIa (fast-twitch) fiber content was amongst the highest reported in the literature. Imaging analysis of MHC IIa fibers revealed a mean CSA of 4218 ± 933 μm2 and MND of 12,548 ± 3181 μm3. While the fast-twitch fiber CSA was comparable to values in previous literature, mean MND was smaller than has been reported in untrained men, implying greater capacity for growth and repair. These findings showcase the unique muscle cell structure of an elite powerlifter, extending the known physiological limits of human muscle size and strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allouh MZ, Rosser BW. Nandrolone decanoate increases satellite cell numbers in the chicken pectoralis muscle. Histol Histopathol. 2010;25(2):133–40. https://doi.org/10.14670/HH-25.133.

    Article  CAS  PubMed  Google Scholar 

  2. Bagley JR, Galpin AJ. Three-dimensional printing of human skeletal muscle cells: An interdisciplinary approach for studying biological systems. Biochem Mol Biol Educ. 2015;43(6):403–7. https://doi.org/10.1002/bmb.20891.

    Article  CAS  PubMed  Google Scholar 

  3. Bagley JR, McLeland KA, Arevalo JA, Brown LE, Coburn JW, Galpin AJ. Skeletal muscle fatigability and myosin heavy chain fiber type in resistance trained men. J Strength Cond Res. 2017;31(3):602–7. https://doi.org/10.1519/JSC.0000000000001759.

    Article  PubMed  Google Scholar 

  4. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335(1):1–7. https://doi.org/10.1056/NEJM199607043350101.

    Article  CAS  PubMed  Google Scholar 

  5. Cristea A, Qaisar R, Edlund PK, Lindblad J, Bengtsson E, Larsson L. Effects of aging and gender on the spatial organization of nuclei in single human skeletal muscle cells. Aging Cell. 2010;9(5):685–97. https://doi.org/10.1111/j.1474-9726.2010.00594.x.

    Article  CAS  PubMed  Google Scholar 

  6. Curry LA, Wagman DF. Qualitative description of the prevalence and use of anabolic androgenic steroids by United States powerlifters. Percept Mot Skills. 1999;88(1):224–33. https://doi.org/10.2466/pms.1999.88.1.224.

    Article  CAS  PubMed  Google Scholar 

  7. D’Antona G, Lanfranconi F, Pellegrino MA, Brocca L, Adami R, Rossi R, Moro G, Miotti D, Canepari M, Bottinelli R. Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. J Physiol. 2006;570(Pt 3):611–27. https://doi.org/10.1113/jphysiol.2005.101642.

    Article  CAS  PubMed  Google Scholar 

  8. Egner IM, Bruusgaard JC, Eftestol E, Gundersen K. A cellular memory mechanism aids overload hypertrophy in muscle long after an episodic exposure to anabolic steroids. J Physiol. 2013;591(24):6221–30. https://doi.org/10.1113/jphysiol.2013.264457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Epstein CJ. Cell size, nuclear content, and the development of polyploidy in the Mammalian liver. Proc Natl Acad Sci U S A. 1967;57(2):327–34. https://doi.org/10.1073/pnas.57.2.327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eriksson A, Kadi F, Malm C, Thornell LE. Skeletal muscle morphology in power-lifters with and without anabolic steroids. Histochem Cell Biol. 2005;124(2):167–75. https://doi.org/10.1007/s00418-005-0029-5.

    Article  CAS  PubMed  Google Scholar 

  11. Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68. https://doi.org/10.2165/00007256-200737020-00004.

    Article  PubMed  Google Scholar 

  12. Fry AC, Schilling BK, Staron RS, Hagerman FC, Hikida RS, Thrush JT. Muscle fiber characteristics and performance correlates of male Olympic-style weightlifters. J Strength Cond Res. 2003;17(4):746–54.

    PubMed  Google Scholar 

  13. Fry AC, Webber JM, Weiss LW, Harber MP, Vaczi M, Pattison NA. Muscle fiber characteristics of competitive power lifters. J Strength Cond Res. 2003;17(2):402–10.

    PubMed  Google Scholar 

  14. Fry CS, Noehren B, Mula J, Ubele MF, Westgate PM, Kern PA, Peterson CA. Fibre type-specific satellite cell response to aerobic training in sedentary adults. J Physiol. 2014;592(12):2625–35. https://doi.org/10.1113/jphysiol.2014.271288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34(8):513–54.

    Article  Google Scholar 

  16. Jurimae J, Abernethy PJ, Quigley BM, Blake K, McEniery MT. Differences in muscle contractile characteristics among bodybuilders, endurance trainers and control subjects. Eur J Appl Physiol Occup Physiol. 1997;75(4):357–62. https://doi.org/10.1007/s004210050172.

    Article  CAS  PubMed  Google Scholar 

  17. Kadi F. Adaptation of human skeletal muscle to training and anabolic steroids. Acta Physiol Scand Suppl. 2000;646:1–52.

    CAS  PubMed  Google Scholar 

  18. Kadi F. Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol. 2008;154(3):522–8. https://doi.org/10.1038/bjp.2008.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kadi F, Eriksson A, Holmner S, Butler-Browne GS, Thornell LE. Cellular adaptation of the trapezius muscle in strength-trained athletes. Histochem Cell Biol. 1999;111(3):189–95.

    Article  CAS  Google Scholar 

  20. Karlsen A, Couppé C, Andersen JL, Mikkelsen UR, Nielsen RH, Magnusson SP, Kjaer M, Mackey AL. Matters of fiber size and myonuclear domain: does size matter more than age? Muscle Nerve. 2015;52(6):1040–6. https://doi.org/10.1002/mus.24669.

    Article  CAS  PubMed  Google Scholar 

  21. Kesidis N, Metaxas TI, Vrabas IS, Stefanidis P, Vamvakoudis E, Christoulas K, Mandroukas A, Balasas D, Mandroukas K. Myosin heavy chain isoform distribution in single fibres of bodybuilders. Eur J Appl Physiol. 2008;103(5):579–83. https://doi.org/10.1007/s00421-008-0751-5.

    Article  CAS  PubMed  Google Scholar 

  22. Klitgaard H, Zhou M, Richter EA. Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders. Acta Physiol Scand. 1990;140(2):175–80. https://doi.org/10.1111/j.1748-1716.1990.tb08989.x.

    Article  CAS  PubMed  Google Scholar 

  23. Korhonen MT, Cristea A, Alén M, Häkkinen K, Sipilä S, Mero A, Viitasalo JT, Larsson L, Suominen H. Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol. 2006;101(3):906–17. https://doi.org/10.1152/japplphysiol.00299.2006.

    Article  CAS  PubMed  Google Scholar 

  24. Liu JX, Höglund AS, Karlsson P, Lindblad J, Qaisar R, Aare S, Bengtsson E, Larsson L. Myonuclear domain size and myosin isoform expression in muscle fibres from mammals representing a 100,000-fold difference in body size. Exp Physiol. 2009;94(1):117–29. https://doi.org/10.1113/expphysiol.2008.043877.

    Article  CAS  PubMed  Google Scholar 

  25. Murach KA, Bagley JR, McLeland KA, Arevalo JA, Ciccone AB, Malyszek KK, Wen Y, Galpin AJ. Improving human skeletal muscle myosin heavy chain fiber typing efficiency. J Muscle Res Cell Motil. 2016;37(1–2):1–5. https://doi.org/10.1007/s10974-016-9441-9.

    Article  CAS  PubMed  Google Scholar 

  26. Murach KA, Englund DA, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Myonuclear domain flexibility challenges rigid assumptions on satellite cell contribution to skeletal muscle fiber hypertrophy. Front Physiol. 2018;9:635. https://doi.org/10.3389/fphys.2018.00635.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Murray B, Kenney LW. A practical guide to exercise physiology. Champaign: Human Kinetics; 2016.

    Google Scholar 

  28. Ohira Y, Yoshinaga T, Ohara M, Nonaka I, Yoshioka T, Yamashita-Goto K, Shenkman BS, Kozlovskaya IB, Roy RR, Edgerton VR. Myonuclear domain and myosin phenotype in human soleus after bed rest with or without loading. J Appl Physiol (1985). 1999;87(5):1776–85.

    Article  CAS  Google Scholar 

  29. Oishi Y, Hayashida M, Tsukiashi S, Taniguchi K, Kami K, Roy RR, Ohira Y. Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers. J Appl Physiol (1985). 2009;107(5):1612. https://doi.org/10.1152/japplphysiol.91651.2008.

    Article  CAS  Google Scholar 

  30. Pandorf CE, Caiozzo VJ, Haddad F, Baldwin KM. A rationale for SDS-PAGE of MHC isoforms as a gold standard for determining contractile phenotype. J Appl Physiol. 2010;108(1):222. https://doi.org/10.1152/japplphysiol.01233.2009(author reply 226).

    Article  PubMed  Google Scholar 

  31. Paoli A, Pacelli QF, Cancellara P, Toniolo L, Moro T, Canato M, Miotti D, Neri M, Morra A, Quadrelli M, Reggiani C. Protein supplementation does not further increase latissimus dorsi muscle fiber hypertrophy after eight weeks of resistance training in novice subjects, but partially counteracts the fast-to-slow muscle fiber transition. Nutrients. 2016. https://doi.org/10.3390/nu8060331.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Parcell AC, Sawyer RD, Drummond MJ, O’Neil B, Miller N, Woolstenhulme MT. Single-fiber MHC polymorphic expression is unaffected by sprint cycle training. Med Sci Sports Exerc. 2005;37(7):1133–7.

    Article  Google Scholar 

  33. Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM. Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab. 2006;291(5):E937–46. https://doi.org/10.1152/ajpendo.00190.2006.

    Article  CAS  PubMed  Google Scholar 

  34. Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech. 2000;50(6):500–9. https://doi.org/10.1002/1097-0029(20000915)50:6%3c500:aid-jemt7%3e3.0.co;2-7.

    Article  CAS  PubMed  Google Scholar 

  35. Qaisar R, Larsson L. What determines myonuclear domain size? Indian J Physiol Pharmacol. 2014;58(1):1–12.

    CAS  PubMed  Google Scholar 

  36. Qaisar R, Renaud G, Hedstrom Y, Pöllänen E, Ronkainen P, Kaprio J, Alen M, Sipilä S, Artemenko K, Bergquist J, Kovanen V, Larsson L. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs. J Physiol. 2013;591(9):2333–44. https://doi.org/10.1113/jphysiol.2012.250092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. https://doi.org/10.1038/nmeth.2019.

    Article  CAS  PubMed  Google Scholar 

  38. Serrano N, Colenso-Semple LM, Lazauskus KK, Siu JW, Bagley JR, Lockie RG, Costa PB, Galpin AJ. Extraordinary fast-twitch fiber abundance in elite weightlifters. PLoS One. 2019;14(3):e0207975. https://doi.org/10.1371/journal.pone.0207975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tobias IS, Lazauskas KK, Arevalo JA, Bagley JR, Brown LE, Galpin AJ. Fiber type-specific analysis of AMPK isoforms in human skeletal muscle: advancement in methods via capillary nano-immunoassay. J Appl Physiol (1985). 2017. https://doi.org/10.1152/japplphysiol.00894.2017.

    Article  Google Scholar 

  40. Todd J, Morais DG, Pollack B, Todd T. Shifting gear: a historical analysis of the use of supportive apparel in powerlifting. Iron Game Hist. 2015;13(2-3):37–56.

    Google Scholar 

  41. Trappe S, Luden N, Minchev K, Raue U, Jemiolo B, Trapp TA. Skeletal muscle signature of a champion sprint runner. J Appl Physiol (1985). 2015;118(12):1460–6. https://doi.org/10.1152/japplphysiol.00037.2015.

    Article  PubMed Central  Google Scholar 

  42. Vanderburgh PM, Batterham AM. Validation of the Wilks powerlifting formula. Med Sci Sports Exerc. 1999;31(12):1869–75.

    Article  CAS  Google Scholar 

  43. Yesalis CE 3rd, Herrick RT, Buckley WE, Friedl KE, Brannon D, Wright JE. Self-reported use of anabolic-androgenic steroids by elite power lifters. Phys Sportsmed. 1988;16(12):91–100. https://doi.org/10.1080/00913847.1988.11709666.

    Article  PubMed  Google Scholar 

  44. Yu JG, Bonnerud P, Eriksson A, Stal PS, Tegner Y, Malm C. Effects of long term supplementation of anabolic androgen steroids on human skeletal muscle. PLoS One. 2014;9(9):e105330. https://doi.org/10.1371/journal.pone.0105330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the team members involved in both the Biochemistry and Molecular Exercise Physiology Laboratory at California State University, Fullerton, as well as those in the Muscle Physiology Laboratory at San Francisco State University (SFSU). Special thanks to Nathan Serrano, M.S., Kara Lazauskas, M.S., and Jeremy Siu, B.S. for performing the muscle biopsy procedure and fiber type analysis. Further thanks go to Donny Gregg, M.S. for assisting with fiber typing analysis and Annette Chan, Ph.D. (Cell and Molecular Imaging Center, Department of Biology, SFSU) for her technical assistance with the confocal microscope. This article includes data from the OpenPowerlifting project, https://www.openpowerlifting.org. You may download a copy of the data at https://gitlab.com/openpowerlifting/opl-data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Bagley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machek, S.B., Lorenz, K.A., Kern, M. et al. Skeletal Muscle Fiber Type and Morphology in a Middle-Aged Elite Male Powerlifter Using Anabolic Steroids. J. of SCI. IN SPORT AND EXERCISE 3, 404–411 (2021). https://doi.org/10.1007/s42978-019-00039-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-00039-z

Keywords

Navigation