• Eduardo Ruiz-HitzkyEmail author
  • Margarita Darder
  • Bernd Wicklein
  • Fidel Antonio Castro-Smirnov
  • Pilar Aranda


Clays have traditionally been linked to health care, being used for centuries in the fight against infections and diseases. Similarly, biohybrids produced by combinations of clays and biological species through ‘bottom-up’ approaches have been evaluated over the past decade for biomedical and pharmaceutical uses. These biohybrids show interesting features such as biocompatibility and biodegradability which make them suitable for healthcare applications. The aim of the present communication was to review recent research contributions describing progress and the role of biohybrid materials based on clays in biomedicine and pharmacy disciplines. Emphasis will be on the authors’ own experience of this topic, particularly on aspects related to controlled drug-delivery systems, adjuvants of vaccines, and vectors for non-viral gene transfection. Bionanocomposites offer several advantages for use in the design of new and efficient pharmacological formulations for cutaneous and oral administration. In these systems, the drug is typically entrapped in the clay and protected by a biopolymer matrix, and both components contribute to a gradual release of the drug. Clay-based hybrids have also shown their efficacy in vaccines as they can act as nanocarriers of viral particles, due to the biomimetic interface created on the clay surface after adsorption of suitable biomolecules such as phospholipids, while the clay acts as an adjuvant to increase the efficacy of the vaccine. Finally, a new application of clays as non-viral vectors for controlled gene delivery is attracting increasing interest in the treatment of diverse diseases; clays such as sepiolite have demonstrated their ability to act as nanocarriers of nucleic acids and facilitate their transfection in mammalian cells.


Biomedical Applications Drug Delivery Gene Transfection Hybrid Materials Vaccine Adjuvants 



The authors acknowledge the financial support from MINECO, Spain (MAT2015-71117-R), and the EU COST Action Program (MP1202). B. Wicklein acknowledges MINECO, Spain, for the Juan de la Cierva grant (IJCI-2015-23886). The authors thank Dr. O. Piétrement and Dr. B.S. Lopez for fruitful discussions about sepiolite-DNA gene-transfer results.


  1. Aguzzi, C., Cerezo, P., Viseras, C., & Caramella, C. (2007). Use of clays as drug delivery systems: Possibilities and limitations. Applied Clay Science, 36, 22–36.CrossRefGoogle Scholar
  2. Aguzzi, C., Cerezo, P., Sandri, G., Ferrari, F., Rossi, S., Bonferoni, C., Caramella, C., & Viseras, C. (2014). Intercalation of tetracycline into layered clay mineral material for drug delivery purposes. Materials Technology, 29, B96-B99.CrossRefGoogle Scholar
  3. Alcantara, A.C.S., Aranda, P., Darder, M., & Ruiz-Hitzky, E. (2010). Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems. Journal of Materials Chemistry, 20, 9495–9504.CrossRefGoogle Scholar
  4. Allègre, J. (2012). Les silicates d’alumine (argiles) en therapeutique. Une pratique coutumière ancienne relayée dans la médecine moderne. PhD Thesis, Université Paris XIII, Paris.Google Scholar
  5. Ambre, A.H., Katti, D.R., & Katti, K.S. (2015). Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering. Journal of Biomedical Materials Research Part A, 103, 2077–2101.CrossRefGoogle Scholar
  6. Aranda, P. and Ruiz-Hitzky, E. (2018). Immobilization of Nanoparticles on Fibrous Clay Surfaces: Towards Promising Nanoplatforms for Advanced Functional Applications. The Chemical Record, 18, 1125−1137.CrossRefGoogle Scholar
  7. Aranda, P., He, J., Darder, M., Fernández-Saiz, P., Monte-Serrano, M., Charlet, L., & Ruiz-Hitzky, E. (2014). Hydroxypropylmethylcellulose/gentamicin-montmorillonite bionanocomposite films with antimicrobial activity. Proceedings of the EU COST Action MP1202: HINT Scientific Workshop on Applications of Hybrid Materials Interfaces, Istanbul.Google Scholar
  8. Aranda, P., Lo Dico, G., Lisuzzo, L., Wicklein, B., del Real, G., Lazzara, G., & Ruiz-Hitzky, E. (2018). Sepiolite-halloysite nanoarchitectures and their role in functional nanocomposite. ACS Proceedings of the 255th National Meeting & Exposition of the American Chemical Society, New Orleans.Google Scholar
  9. Ariga, K., Hill, J.P., Lee, M.V., Vinu, A., Charvet, R., & Acharya, S. (2008). Challenges and breakthroughs in recent research on self-assembly. Science and Technology of Advanced Materials, 9, #014109.CrossRefGoogle Scholar
  10. Aufreiter, S., Hancock, R.G.V., Mahaney, W.C., Stambolic-Robb, A., & Sanmugadas, K. (1997). Geochemistry and mineralogy of soils eaten by humans. International Journal of Food Sciences and Nutrition, 48, 293–305.CrossRefGoogle Scholar
  11. Carretero, M.I. and Pozo, M. (2009). Clay and non-clay minerals in the pharmaceutical industry Part I. Excipients and medical applications. Applied Clay Science, 46, 73–80.CrossRefGoogle Scholar
  12. Carretero, M.I. and Pozo, M. (2010). Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Applied Clay Science, 47, 171–181.CrossRefGoogle Scholar
  13. Castro-Smirnov, F. A. (2014). Physicochemical characterization of DNA-based bionanocomposites using nanofibrous clay minerals. Biological applications. PhD Thesis, Université Paris XI, Versailles (France).Google Scholar
  14. Castro-Smirnov, F.A., Piétrement, O., Aranda, P., Bertrand, J.-R., Ayache, J., Le Cam, E., Ruiz-Hitzky, E., & Lopez, B.S. (2016). Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells. Scientific Reports, 6, 36341 (14p).CrossRefGoogle Scholar
  15. Castro-Smirnov, F.A., Ayache, J., Bertrand, J.-R., Dardillac, E., Le Cam, E., Piétrement, O., Aranda, P., Ruiz-Hitzky, E., & Lopez, B.S. (2017a). Cellular uptake pathways of sepiolite nanofibers and DNA transfection improvement. Scientific Reports, 7, 5586 (10p).Google Scholar
  16. Castro-Smirnov, F.A., Rodriguez-Hoyos, O.E., Guzmán-Martínez, F., Lopez, B.S., Piétrement, O., Ayache, J., le Cam, E., Bertrand, J.-R., Aranda, P., & Ruiz-Hitzky, E. (2017b). New biohybrid materials as nanocarriers of nucleic acids and their biotechnological applications. Biotecnología Aplicada, 34, 3511–3514.Google Scholar
  17. Chen, D. and Kristensen, D. (2009). Opportunities and challenges of developing thermostable vaccines. Expert Review of Vaccines, 8, 547–557.CrossRefGoogle Scholar
  18. Choy, J.H., Oh, J.M., Park, M., Sohn, K.M., & Kim, J.W. (2004). Inorganic–Biomolecular Hybrid Nanomaterials as a Genetic Molecular Code System. Advanced Materials, 16, 1181–1184.CrossRefGoogle Scholar
  19. Choy, J.-H., Kwak, S.-Y., Jeong, Y.-J., & Park, J.-S. (2000). Inorganic Layered Double Hydroxides as Nonviral Vectors. Angewandte Chemie International Edition, 39, 4041–4045.CrossRefGoogle Scholar
  20. Choy, J.-H., Choi, S.-J., Oh, J.-M., & Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36, 122–132.CrossRefGoogle Scholar
  21. Clapp, T., Siebert, P., Chen, D., & Jones Braun, L. (2011). Vaccines with aluminum-containing adjuvants: Optimizing vaccine efficacy and thermal stability. Journal of Pharmaceutical Sciences, 100, 388–401.CrossRefGoogle Scholar
  22. Costantino, U., Nocchetti, M., Tammaro, L., & Vittoria, V. (2012). Modified Hydrotalcite-Like Compounds as Active Fillers of Biodegradable Polymers for Drug Release and Food Packaging Applications. Recent Patents on Nanotechnology, 6, 218–230.CrossRefGoogle Scholar
  23. Darder, M., López-Blanco, M., Aranda, P., Leroux, F. and Ruiz-Hitzky, E. (2005). Bio-Nanocomposites Based on Layered Double Hydroxides. Chemistry of Materials, 17, 1969–1977.CrossRefGoogle Scholar
  24. Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2007). Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials, 19, 1309–1319.CrossRefGoogle Scholar
  25. Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2015). Biomedical applications of cationic clay minerals. RSC Advances, 5, 29467–29481.CrossRefGoogle Scholar
  26. Giani, G., Fedi, S., & Barbucci, R. (2012). Hybrid Magnetic Hydrogel: A Potential System for Controlled Drug Delivery by Means of Alternating Magnetic Fields. Polymers, 4, 1157–1169.CrossRefGoogle Scholar
  27. He, J. (2013). (Bio)nanocomposites for water treatment of arsenic/gentamincin contaminated water or medicine use. PhD Thesis, l’Université Joseph Fourier, Grenoble.Google Scholar
  28. Heegaard, P., Dedieu, L., Johnson, N., Le Potier, M.-F., Mockey, M., Mutinelli, F., Vahlenkamp, T., Vascellari, M., & Sørensen, N. (2011). Adjuvants and delivery systems in veterinary vaccinology: current state and future developments. Archives of Virology, 156, 183–202.CrossRefGoogle Scholar
  29. Kelly, H.M., Deasy, P.B., Ziaka, E., & Claffey, N. (2004). Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. International Journal of Pharmaceutics, 274, 167–183.CrossRefGoogle Scholar
  30. Khan, A.I., Lei, L., Norquist, A.J., & O'Hare, D. (2001). Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chemical Communications, 2342–2343.Google Scholar
  31. Knezevich, M. (1999). Geophagy as a therapeutic mediator of endoparasitism in a free-ranging group of rhesus macaques (Macaca mulatta). American Journal of Primatology, 44, 71–82.CrossRefGoogle Scholar
  32. Liewig, N., Rautureau, M., & Gomes, C. (2012). Les argiles et la santé humaine: d'hier à aujourd'hui. Etude et Gestion des Sols, 19, 267–277.Google Scholar
  33. Lisuzzo, L. (2017). Halloysite, sepiolite and cellulose nano fibers based bio-hybrid material for drug delivery. Master Thesis, Università degli Studi de Palermo, Palermo.Google Scholar
  34. Lisuzzo, L., Aranda, P., Wicklein, B., Real, G.D., Lazzara, G., & Ruiz-Hitzky, E. (2018). Halloysite-sepiolite-nanocellulose heterostructured films for drug-delivery applications (in preparation).Google Scholar
  35. Liu, S., Wu, P., Yu, L., Li, L., Gong, B., Zhu, N., Dang, Z., & Yang, C. (2017). Preparation and characterization of organo-vermiculite based on phosphatidylcholine and adsorption of two typical antibiotics. Applied Clay Science, 137, 160–167.CrossRefGoogle Scholar
  36. Luckham, P.F. and Rossi, S. (1999). The colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science, 82, 43–92.CrossRefGoogle Scholar
  37. Lvov, Y. and Abdullayev, E. (2013). Functional polymer–clay nanotube composites with sustained release of chemical agents. Progress in Polymer Science, 38, 1690–1719.CrossRefGoogle Scholar
  38. Lvov, Y., Wang, W., Zhang, L., & Fakhrullin, R. (2015). Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Advanced Materials, 28, 1227–1250.CrossRefGoogle Scholar
  39. Mahaney, W.C., Milner, M.W., Aufreiter, S., Hancock, R.G.V., Wrangham, R., & Campbell, S. (2005). Soils Consumed by Chimpanzees of the Kanyawara Community in the Kibale Forest, Uganda. International Journal of Primatology, 26, 1375–1398.CrossRefGoogle Scholar
  40. Merino, D., Ollier, R., Lanfranconi, M., & Alvarez, V. (2016). Preparation and characterization of soy lecithin-modified bentonites. Applied Clay Science, 127-128, 17–22.CrossRefGoogle Scholar
  41. Mizrahy, S. and Peer, D. (2012). Polysaccharides as building blocks for nanotherapeutics. Chemical Society Reviews, 41, 2623–2640.CrossRefGoogle Scholar
  42. Mousa, M.H., Dong, Y., & Davies, I.J. (2016). Recent advances in bionanocomposites: Preparation, properties, and applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 65, 225–254.CrossRefGoogle Scholar
  43. Nagy, K., Bíró, G., Berkesi, O., Benczédi, D., Ouali, L., & Dékány, I. (2013). Intercalation of lecithins for preparation of layered nanohybrid materials and adsorption of limonene. Applied Clay Science, 72, 155–162.CrossRefGoogle Scholar
  44. Nitta, K.S. and Numata, K. (2013). Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering. International Journal of Molecular Sciences, 14, 1629–1654.CrossRefGoogle Scholar
  45. Oh, J.-M., Park, D.-H., Choi, S.-J., & Choy, J.-H. (2012). LDH Nanocontainers as Bio-Reservoirs and Drug Delivery Carriers. Recent Patents on Nanotechnology, 6, 200–217.CrossRefGoogle Scholar
  46. Olmo, N., Lizarbe, M.A., & Gavilanes, J.G. (1987). Biocompatibility and degradability of sepiolite-collagen complex. Biomaterials, 8, 67–69.CrossRefGoogle Scholar
  47. Pacwa-Plociniczak, M., Plaza, G.A., Piotrowska-Seget, Z. and Cameotra, S.S. (2011). Environmental applications of biosurfactants: Recent advances. International Journal of Molecular Sciences, 12, 633–654.CrossRefGoogle Scholar
  48. Park, D.-H., Hwang, S.-J., Oh, J.-M., Yang, J.-H., & Choy, J.-H. (2013). Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Progress in Polymer Science, 38, 1442–1486.CrossRefGoogle Scholar
  49. Patil, V., Venkatesh, M.D., Krishnappa, G.K., & Srinivasa Gouda, R.N. (2004). Immune response of calves to bentonite and alum adjuvanted combined vaccine against haemorrhagic septicaemia and black quarter. Indian Journal of Animal Sciences, 74, 845–847.Google Scholar
  50. Piétrement, O., Castro-Smirnov, F. A., Le Cam, E., Aranda, P., Ruiz-Hitzky, E., & Lopez, B.S. (2018). Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives. The Chemical Record, 18, 849–857.CrossRefGoogle Scholar
  51. Plant, A.L. (1999). Supported hybrid bilayer membranes as rugged cell membrane mimics. Langmuir, 15, 5128–5135.CrossRefGoogle Scholar
  52. Rapacz-Kmita, A., Stodolak-Zych, E., Dudek, M., Gajek, M., & Ziąbka, M. (2017). Magnesium aluminium silicate–gentamicin complex for drug delivery systems. Journal of Thermal Analysis and Calorimetry, 127, 871–880.CrossRefGoogle Scholar
  53. Rautureau, M. (2010). Argiles et santé: Propriétés et thérapies, Lavoisier, Paris.Google Scholar
  54. Rautureau, M., Figueiredo Gomes, C d S Liewig, N., & Katouzian-Safadi, M. (2017). Clays and Health. Properties and Therapeutic Uses, Springer.CrossRefGoogle Scholar
  55. Rebitski, E.P., Aranda, P., Darder, M., Carraro, R., & Ruiz-Hitzky, E. (2018). Intercalation of metformin into montmorillonite. Dalton Transactions, 47, 3185–3192.CrossRefGoogle Scholar
  56. Ribeiro, L.N.M., Alcântara, A.C.S., Darder, M., Aranda, P., Herrmann, P.S.P., Araújo-Moreira, F.M., García-Hernández, M., & Ruiz-Hitzky, E. (2014a). Bionanocomposites containing magnetic graphite as potential systems for drug delivery. International Journal of Pharmaceutics, 477, 553–563.CrossRefGoogle Scholar
  57. Ribeiro, L.N.M., Alcântara, A.C.S., Darder, M., Aranda, P., Araújo-Moreira, F.M., & Ruiz-Hitzky, E. (2014b). Pectin-coated chitosan–LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. International Journal of Pharmaceutics, 463, 1–9.CrossRefGoogle Scholar
  58. Rives, V., del Arco, M., & Martín, C. (2014). Intercalation of drugs in layered double hydroxides and their controlled release: A review. Applied Clay Science, 88-89, 239–269.CrossRefGoogle Scholar
  59. Ruiz-Hitzky, E. and Van Meerbeek, A. (2006). Clay mineral- and organoclay–polymer nanocomposite. Handbook of Clay Science (F. Bergaya, B.K.G. Theng and G. Lagaly, editors). Developments in Clay Science. Elsevier, Amsterdam.Google Scholar
  60. Ruiz-Hitzky, E., Aranda, P., & Darder, M. (2008). Bionanocomposites. Pp. 1–28 in: Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Hoboken, NJ.Google Scholar
  61. Ruiz-Hitzky, E., Darder, M., & Aranda, P. (2009a). Progress in bionanocomposite materials. Pp. 149–189 in: Annual Review of Nanoresearch, 3 (Q. Z. G. Cao and C. J. Brinker, editors). World Scientific Publishing, Singapore.CrossRefGoogle Scholar
  62. Ruiz-Hitzky, E., Darder, M., Aranda, P., Martin del Burgo, M.Á., & del Real, G. (2009b). Bionanocomposites as new carriers for influenza vaccines. Advanced Materials, 21, 4167–4171.CrossRefGoogle Scholar
  63. Ruiz-Hitzky, E., Aranda, P., Darder, M., & Rytwo, G. (2010). Hybrid materials based on clays for environmental and biomedical applications. Journal of Materials Chemistry, 20, 9306–9321.CrossRefGoogle Scholar
  64. Ruiz-Hitzky, E., Darder, M., Aranda, P., & Ariga, K. (2010). Advances in Biomimetic and Nanostructured Biohybrid Materials. Advanced Materials, 22, 323–336.CrossRefGoogle Scholar
  65. Ruiz-Hitzky, E., Aranda, P., Darder, M., & Ogawa, M. (2011). Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom-up processes. Chemical Society Reviews, 40, 801–828.CrossRefGoogle Scholar
  66. Rytwo, G., Mendelovits, A., Eliyahu, D., Pitcovski, J., & Aizenshtein, E. (2010). Adsoption of two vaccine-related proteins to montmorillonite and organo-montmorillonite. Applied Clay Science, 50, 569–575.CrossRefGoogle Scholar
  67. Stambolic-Robb, A. (1997). Geophagy among free-ranging Sumatran orangutans (Pongo pygmaeus abelii) of Gunung Leuser National Park and ex-captive bornean orang-utans (Pongo pygmaeus pygmaeaus) of Sungai Wain Forest, Indonesia. Master Thesis, York University, Ontario.Google Scholar
  68. Sun, T. and Qing, G. (2011). Biomimetic Smart Interface Materials for Biological Applications. Advanced Materials, 23, H57-H77.CrossRefGoogle Scholar
  69. Tingaut, P., Zimmermann, T., & Lopez-Suevos, F. (2010). Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(lactic acid) and Acetylated Microfibrillated Cellulose. Biomacromolecules, 11, 454–464.CrossRefGoogle Scholar
  70. Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., & Aguzzi, C. (2010). Current challenges in clay minerals for drug delivery. Applied Clay Science, 48, 291–295.CrossRefGoogle Scholar
  71. Wakibara, J.V., Huffman, M.A., Wink, M., Reich, S., Aufreiter, S., Hancock, R.G.V., Sodhi, R., Mahaney, W.C., & Russel, S. (2001). The Adaptive Significance of Geophagy for Japanese Macaques (Macaca fuscata) at Arashiyama, Japan. International Journal of Primatology, 22, 495–520.CrossRefGoogle Scholar
  72. Wang, Q., Mynar, J.L., Yoshida, M., Lee, E., Lee, M., Okuro, K., Kinbara, K., & Aida, T. (2010). High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 463, 339.CrossRefGoogle Scholar
  73. Wicklein, B., Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2010). Bio-organoclays based on phospholipids as immobilization hosts for biological species. Langmuir, 26, 5217–5225.CrossRefGoogle Scholar
  74. Wicklein, B., Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2011). Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes. ACS Applied Materials and Interfaces, 3, 4339–4348.CrossRefGoogle Scholar
  75. Wicklein, B., Martín del Burgo, M.Á., Yuste, M., Darder, M., Escrig Llavata, C., Aranda, P., Ortín, J., del Real, G., & Ruiz-Hitzky, E. (2012). Lipid-Based Bio-Nanohybrids for Functional Stabilisation of Influenza Vaccines. European Journal of Inorganic Chemistry, 2012, 5186–5191.CrossRefGoogle Scholar
  76. Wicklein, B., Aranda, P., Ruiz-Hitzky, E., & Darder, M. (2013). Hierarchically structured bioactive foams based on polyvinyl alcohol-sepiolite nanocomposites. Journal of Materials Chemistry B, 1, 2911–2920.CrossRefGoogle Scholar
  77. Wicklein, B., Darder, M., Aranda, P., Martín del Burgo, M.A., del Real, G., Esteban, M., & Ruiz-Hitzky, E. (2016). Clay-lipid nanohybrids: towards influenza vaccines and beyond. Clay Minerals, 51, 529–538.CrossRefGoogle Scholar
  78. Wilharm, G., Lepka, D., Faber, F., Hofmann, J., Kerrinnes, T., & Skiebe, E. (2010). A simple and rapid method of bacterial transformation. Journal of Microbiological Methods, 80, 215–216.CrossRefGoogle Scholar
  79. Williams, L.B. (2018). Geomimicry: harnessing the antibacterial action of clays. Clay Minerals, 52, 1–24.CrossRefGoogle Scholar
  80. Williams, L.B. & Haydel, S.E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Review, 52, 745–770.CrossRefGoogle Scholar
  81. Yao, H.B., Tan, Z.H., Fang, H.Y., & Yu, S.H. (2010). Artificial Nacre-like Bionanocomposite Films from the Self-Assembly of Chitosan–Montmorillonite Hybrid Building Blocks. Angewandte Chemie International Edition, 49, 10127–10131.CrossRefGoogle Scholar
  82. Yao, K., Huang, S., Tang, H., Xu, Y., Buntkowsky, G., Berglund, L.A., & Zhou, Q. (2017). Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites. ACS Applied Materials & Interfaces, 9, 20169–20178.CrossRefGoogle Scholar
  83. Yoshida, N. & Sato, M. (2009). Plasmid uptake by bacteria: a comparison of methods and efficiencies. Applied Microbiology and Biotechnology, 83, 791–798.CrossRefGoogle Scholar
  84. Zheng, J.P., Wang, C.Z., Wang, X.X., Wang, H.Y., Zhuang, H., & Yao, K.D. (2007). Preparation of biomimetic three-dimensional gelatin/montmorillonite–chitosan scaffold for tissue engineering. Reactive and Functional Polymers, 67, 780–788.Google Scholar
  85. Zhuang, H., Zheng, J.P., Gao, H., & De Yao, K. (2007). In vitro biodegradation and biocompatibility of gelatin/montmorillonite-chitosan intercalated nanocomposite. Journal of Materials Science: Materials in Medicine, 18, 951–957.Google Scholar

Copyright information

© The Clay Minerals Society 2019
J.-H. Choy

Authors and Affiliations

  • Eduardo Ruiz-Hitzky
    • 1
    Email author
  • Margarita Darder
    • 1
  • Bernd Wicklein
    • 1
  • Fidel Antonio Castro-Smirnov
    • 2
  • Pilar Aranda
    • 1
  1. 1.Materials Science Institute of Madrid, CSICMadridSpain
  2. 2.Universidad de las Ciencias InformáticasHavanaCuba

Personalised recommendations