The Effects of Oxyanion Adsorption on Reactive Oxygen Species Generation by Titanium Dioxide

  • 5 Accesses


The growing use of nano titanium dioxide (TiO2) in consumer and agricultural products has accelerated its introduction into terrestrial environments, where its impact has not been documented extensively. TiO2 toxicity arises primarily from its ability to photochemically generate reactive oxygen species (ROS), including hydrogen peroxide (H2O2). While common ligands in soil porewaters can either hinder or enhance the degradation of organic contaminants by TiO2, their effects on ROS production by TiO2 have not been understood clearly. The objective of this study was to assess the effect of phosphate (P) and nitrate on UV-irradiated anatase, nano-TiO2. Accordingly, H2O2-generation kinetics experiments were conducted in UV-irradiated TiO2 under environmentally relevant concentrations of the ligands (0, 50, 100, and 250 μM) and pH values (4.00 ± 0.02 and 8.00 ± 0.02) from 0–100 min. Under all conditions, H2O2 grew logarithmically and reached between 5.38 and 22.98 μM after 100 min. At pH 4.00 ± 0.02, H2O2 production was suppressed by P but not by nitrate. Conversely, at pH 8.00 ± 0.02, nitrate did not affect H2O2 concentration while P increased it. Non-specific, minimal adsorption of nitrate prevented interference with the photoreactivity of TiO2. Due to the pH-dependent behavior of suspended TiO2 and H2O2 degradation rates, specific adsorption of P on TiO2 impeded its ability to produce H2O2 photochemically at pH 4.00 ± 0.02 but amplified it at pH 8.00 ± 0.02.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1.
Fig. 2.
Fig. 3.


  1. Alshameri, A., Yan, C., & Lei, X. (2014). Enhancement of phosphate removal from water by TiO2/Yemeni natural zeolite: Preparation, characterization and thermodynamic. Microporous and Mesoporous Materials,196, 145–157.

  2. Amenta, V., Aschberger, K., Arena, M., Bouwmeester, H., Botelho Moniz, F., Brandhoff, P., Gottardo, S., Marvin, H. J. P., Mech, A., Quiros Pesudo, L., Rauscher, H., Schoonjans, R., Vettori, M. V., Weigel, S., & Peters, R. J. (2015). Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology,73, 463–476.

  3. Anandan, S., Sathish Kumar, P., Pugazhenthiran, N., Madhavan, J., & Maruthamuthu, P. (2008). Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Solar Energy Materials and Solar Cells,92, 929–937.

  4. ANSES (2016). Proposal for Harmonised Classification and Labelling Substance Name: Titanium dioxide (pp. 1–159). France: Maisons-Alfort pp.

  5. Bernhardt, E. S., Colman, B. P., Hochella, M. F., Cardinale, B. J., Nisbet, R. M., Richardson, C. J., & Yin, L. (2010). An ecological perspective on nanomaterial impacts in the environment. Journal of Environmental Quality,39, 1954–1965.

  6. Budarz, J. F., Turolla, A., Piasecki, A. F., Bottero, J. Y., Antonelli, M., & Wiesner, M. R. (2017). Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO2 Photocatalysis. Langmuir, 33, 2770–2779.

  7. Burek, B. O., Bahnemann, D. W., & Bloh, J. Z. (2019). Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catalysis,9, 25–37.

  8. Ci, Y. X., & Wang, F. (1991). Catalytic effects of peroxidase-like metalloporphyrins on the fluorescence reaction of homovanillic acid with hydrogen peroxide. Fresenius’ Journal of Analytical Chemistry,339, 46–49.

  9. Connor, P. A., & McQuillan, A. J. (1999). Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir,15, 2916–2921.

  10. Djerad, S., Tifouti, L., Crocoll, M., & Weisweiler, W. (2004). Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5-WO3/TiO2 catalysts. Journal of Molecular Catalysis A: Chemical,208, 257–265.

  11. Drobne, D., Jemec, A., & Pipan Tkalec, Ž. (2009). In vivo screening to determine hazards of nanoparticles: Nanosized TiO2. Environmental Pollution,157, 1157–1164.

  12. Dutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science,278, 270–275.

  13. European Chemicals Agency (2017) Titanium dioxide proposed to be classified as suspected of causing cancer when inhaled. Helsinki, Finland.

  14. French, R. A., Jacobson, A. R., Kim, B., Isley, S. L., Penn, L., & Baveye, P. C. (2009). Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environmental Science and Technology,43, 1354–1359.

  15. Fried, M., & Broeshart, H. (1967) The Soil-Plant System. Acadamic Press, New York, NY.

  16. Fu, P. P., Xia, Q., Hwang, H. M., Ray, P. C., & Yu, H. (2014). Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis,22, 64–75.

  17. Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports,63, 515–582.

  18. Gardea-Torresdey, J. L., Rico, C. M., & White, J. C. (2014). Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environmental Science and Technology,48, 2526–2540.

  19. Ghosh, M., Bandyopadhyay, M., & Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere, 81, 1253–1262.

  20. Gondikas, A. P., Von Der Kammer, F., Reed, R. B., Wagner, S., Ranville, J. F., & Hofmann, T. (2014). Release of TiO2 nanoparticles from sunscreens into surface waters: A one-year survey at the old Danube recreational lake. Environmental Science and Technology,48, 5415–5422.

  21. Gong, W. (2001). A real time in situ ATR-FTIR spectroscopic study of linear phosphate adsorption on titania surfaces. International Journal of Mineral Processing,63, 147–165.

  22. Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions. Environmental Science and Technology,43, 9216–9222.

  23. Guilbault, G. G., Kramer, D. N., & Hackley, E. (1967). A New Substrate for Fluorometric Determination of Oxidative Enzymes. Analytical Chemistry,39, 271.

  24. Guilbault, G. G., Brignac, P., & Zimmer, M. (1968). Homovanillic Acid as a Fluorometric Substrate for Oxidative Enzymes. Analytical Applications of the Peroxidase, Glucose Oxidase, and Xanthine Oxidase Systems. Analytical Chemistry,40, 190–196.

  25. Gupta, R., & Xie, H. (2018). Nanoparticles in Daily Life: Applications, Toxicity and Regulations. Journal of Environmental Pathology, Toxicology and Oncology,37, 209–230.

  26. Hadjiivanov, K. I., Klissurski, D. G., & Davydov, A. A. (1989). Study of phosphate-modified TiO2 (anatase). Journal of Catalysis,116, 498–505.

  27. Hotze, E. M., Phenrat, T., & Lowry, G. V. (2010). Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. Journal of Environmental Quality,39, 1909–1924.

  28. Hu, C. W., Li, M., Cui, Y. B., Li, D. S., Chen, J., & Yang, L. Y. (2010). Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry,42, 586–591.

  29. ICDD (1971) Anatase Titanium Oxide. Newtown Square, PA. PDF #00-021-1272.

  30. Jassby, D., Farner Budarz, J., & Wiesner, M. (2012). Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environmental Science and Technology,46, 6934–6941.

  31. Kataoka, S., Gurau, M. C., Albertorio, F., Holden, M. A., Lim, S. M., Yang, R. D., & Cremer, P. S. (2004). Investigation of water structure at the TiO2/aqueous interface. Langmuir,20, 1662–1666.

  32. Kathiravan, A., & Renganathan, R. (2009). Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins. Journal of Colloid and Interface Science,331, 401–407

  33. Kavan, L., Stoto, T., Grätzel, M., Fitzmaurice, D., & Shklover, V. (1993). Quantum size effects in nanocrystalline semiconducting TiO2 layers prepared by anodic oxidative hydrolysis of TiCl3. Journal of Physical Chemistry,97, 9493–9498.

  34. Keller, A. A., & Lazareva, A. (2013). Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local. Environmental Science and Technology Letters,1, 65–70.

  35. Khosravi, A., Vossoughi, M., Shahrokhian, S., & Alemzadeh, I. (2013). Magnetic labelled horseradish peroxidase-polymer nanoparticles: A recyclable nanobiocatalyst. Journal of the Serbian Chemical Society,78, 921–931.

  36. Kim, J., & Choi, W. (2011). TiO2 modified with both phosphate and platinum and its photocatalytic activities. Applied Catalysis B: Environmental,106, 39–45.

  37. Konaka, R., Kasahara, E., Dunlap, W. C., Yamamoto, Y., Chien, K. C., & Inoue, M. (1999). Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radical Biology and Medicine,27, 294–300.

  38. Long, M., Brame, J., Qin, F., Bao, J., Li, Q., & Alvarez, P. J. J. (2017). Phosphate Changes Effect of Humic Acids on TiO2 Photocatalysis: From Inhibition to Mitigation of Electron-Hole Recombination. Environmental Science and Technology,51, 514–521.

  39. Ma, H., Brennan, A., & Diamond, S. A. (2012). Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environmental Toxicology and Chemistry,31, 2099–2107.

  40. Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L., & Chan, C. K. (2000). Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. Journal of Catalysis,192, 185–196.

  41. Manke, A., Wang, L., & Rojanasakul, Y. (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International,

  42. Moon, G. H., Kim, W., Bokare, A. D., Sung, N. E., & Choi, W. (2014). Solar production of H2O2 on reduced graphene oxide-TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy and Environmental Science,7, 4023–4028.

  43. Mueller, N. C., Som, C., & Nowack, B. (2009). Exposure modeling of engineered nanoparticles. Nanotech Conference & Expo 2009, Vol 1, Technical Proceedings,41, 159–162.

  44. Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta,27, 31–36.

  45. National Institute for Occupational Safety and Health (2011) Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide.

  46. Nelson, B. P., Candal, R., Corn, R. M., & Anderson, M. A. (2000). Control of surface and ζ potentials on nanoporous TiO2 films by potential-determining and specifically adsorbed ions. Langmuir,16, 6094–6101.

  47. Paital, B. (2014) A modified fluorimetric method for determination of hydrogen peroxide using homovanillic acid oxidation principle. BioMed Research International, 2014.

  48. Pappas, P. S., & Fischer, R. M. (1975). Photo-chemistry of pigments. studies on the mechanism of chalking. Pigment & Resin Technology,4, 3–10.

  49. Patey, M. D., Rijkenberg, M. J. A., Statham, P. J., Stinchcombe, M. C., Achterberg, E. P., & Mowlem, M. (2008). Determination of nitrate and phosphate in seawater at nanomolar concentrations. Trends in Analytical Chemistry,27, 169–182.

  50. Ravichandran, L., Selvam, K., & Swaminathan, M. (2010). Highly efficient activated carbon loaded TiO2 for photo defluoridation of pentafluorobenzoic acid. Journal of Molecular Catalysis A: Chemical,317, 89–96.

  51. Roh, J. Y., Park, Y. K., Park, K., & Choi, J. (2010). Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environmental Toxicology and Pharmacology,29, 167–172.

  52. Ronson, T. K., & McQuillan, A. J. (2002). Infrared Spectroscopic Study of Calcium and Phosphate Ion Coadsorption and of Brushite Crystallization on TiO2. Langmuir,18, 5019–5022.

  53. Sajid, M., Ilyas, M., Basheer, C., Tariq, M., Daud, M., Baig, N., & Shehzad, F. (2015). Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environmental Science and Pollution Research,22, 4122–4143.

  54. Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials & Solar Cells,77, 65–82.

  55. Servin, A. D., Morales, M. I., Castillo-Michel, H., Hernandez-Viezcas, J. A., Munoz, B., Zhao, L., Nunez, J. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2013). Synchrotron verification of TiO2 accumulation in cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environmental Science and Technology,47, 11592–11598.

  56. Sharpley, A. N., & Smith, S. J. (1989). Prediction of Bioavailable Phosphorus Loss in Agricultural Runoff. Journal of Environment Quality,18, 32.

  57. Skocaj, M., Filipic, M., Petkovic, J., & Novak, S. (2011). Titanium dioxide in our everyday life; Is it safe? Radiology and Oncology,45, 227–247.

  58. Staniek, K., & Nohl, H. (1999). H2O2 detection from intact mitochondria as a measure for one-electron reduction of dioxygen requires a non-invasive assay system. Biochimica et Biophysica Acta - Bioenergetics,1413, 70–80.

  59. Tan, W., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Interaction of titanium dioxide nanoparticles with soil components and plants: Current knowledge and future research needs-a critical review. Environmental Science: Nano,5, 257–278.

  60. U.S. Food and Drug Administration (2019) Food and Drugs Chapter 1. Listing of Color Additives Exempt from Certification.

  61. Valant, J., Drobne, D., Sepčić, K., Jemec, A., Kogej, K., & Kostanjšek, R. (2009). Hazardous potential of manufactured nanoparticles identified by in vivo assay. Journal of Hazardous Materials,171, 160–165.

  62. Wan, B., Yan, Y., Liu, F., Tan, W., He, J., & Feng, X. (2016). Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension: A comparative study with orthophosphate. Science of the Total Environment,544, 134–142.

  63. Wang, H., Wick, R. L., & Xing, B. (2009). Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution,157, 1171–1177.

  64. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & Von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science and Technology,46, 2242–2250.

  65. World Health Organization, (2019) Agents Classified by the International Agency for Research on Cancer Monographs, Volumes 1-23. Geneva, Switzerland.

  66. Xiong, X., Zhang, X., Liu, S., Zhao, J., & Xu, Y. (2018). Sustained production of H2O2 in alkaline water solution using borate and phosphate-modified Au/TiO2 photocatalysts. Photochemical and Photobiological Sciences,17, 1018–1022.

  67. Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., & Yang, P. (2006). Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research,110, 179–190.

  68. Yin, J.-J., Liu, J., Ehrenshaft, M., Roberts, J. E., Fu, P. P., Mason, R. P., & Zhao, B. (2012). Phototoxicity of Nano Titanium Dioxides in HaCaT Keratinocytes – Generation of Reactive Oxygen Species and Cell Damage. Toxicology and Applied Pharmacy,263, 81–88.

  69. Zhang, Q., Lima, D. Q., Lee, I., Zaera, F., Chi, M., & Yin, Y. (2011). A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angewandte Chemie - International Edition,50, 7088–7092.

  70. Zhao, D., Chen, C., Wang, Y., Ji, H., Ma, W., Zang, L., & Zhao, J. (2008). Surface Modification of TiO2 by Phosphate: Effect on Photocatalytic Activity and Mechanism Implication. Journal of Physical Chemistry112, 5993–6001.

Download references


The authors gratefully acknowledge the United States Department of Agriculture (Hatch #1002831-ILLU-875-939) for supporting this project financially.

Author information

Correspondence to Yuji Arai.

Ethics declarations

Conflict of Interest

The authors declare that we have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arenberg, M.R., Arai, Y. The Effects of Oxyanion Adsorption on Reactive Oxygen Species Generation by Titanium Dioxide. Clays Clay Miner. (2020) doi:10.1007/s42860-019-00039-8

Download citation


  • Adsorption
  • Anatase
  • Nitrate
  • Phosphate
  • Photocatalysis
  • ROS
  • TiO2