Advertisement

Competitive Adsorption of Uranyl and Toxic Trace Metal Ions at MFe2O4-montmorillonite (M = Mn, Fe, Zn, Co, or Ni) Interfaces

  • Xiaoqiang Jiang
  • Jianan Nie
  • Liang BianEmail author
  • Faqin Dong
  • Mianxin SongEmail author
  • Yi He
  • Huichao He
  • Zhiqin Zheng
  • Tingting Huo
  • Bowen Li
  • Nelson Belzile
  • Shuhui Sun
  • Hao Zou
Article
  • 14 Downloads

Abstract

Adsorption of uranyl (UO22+) ions to mineral surfaces is a potentially effective method for removing this hazardous metal from water, but other toxic trace metal ions (Xn+: Rb+, Sr2+, Cr3+, Mn2+, Ni2+, Zn2+, Cd2+) in uraniferous wastewaters compete with UO22+ for adsorption sites and thus may diminish the capacity of adsorbents to sequester UO22+. A better understanding of competitive adsorption among these metal ions and the development of better adsorbents are, therefore, of critical importance. The purpose of the present study was to synthesize and characterize magnetic adsorbents, consisting of MFe2O4 (M = Mn, Fe, Zn, Co, or Ni) nanoparticles synthesized on montmorillonite (Mnt) edge sites, and to investigate their use as adsorbents for UO22+, including competitive adsorption with trace metal ions. Selective adsorption was studied using Langmuir, Freundlich, and Dubinin-Radushkevich isotherms, and the results showed that Xn+ ions were adsorbed primarily on MFe2O4-montmorillonite surfaces, and the UO22+ ions were adsorbed on the interfaces between montmorillonite edge surfaces and MFe2O4 nanoparticles. Using the Freundlich model, the interface adsorption capacity of UO22+ reached 25.1 mg·g–1 in mixed solution. Further, the UO22+ and Cr3+ ions had a redox reaction on the interfaces with synergistic adsorption. Herein, the adsorption capacity of Cr3+ was 60.2 mg·g–1 using the Freundlich isotherm. The results demonstrated that the MFe2O4-montmorillonite with highly selective adsorption of UO22+ ions is applicable to UO22+ treatment in the presence of toxic trace metal ions.

Graphical abstract

.

Keywords

Adsorption Ferrite Interface Montmorillonite Uranyl 

Notes

Acknowledgments

The authors acknowledge funding from the National Natural Science Foundation of China (41872039 and 41831285), the One-Thousand Talents Scheme in Sichuan Province, Sichuan Science and Technology Program (2018JY0462), and Longshan Fund of Southwest University of Science and Technology (17QR004).

Supplementary material

42860_2019_28_MOESM1_ESM.doc (1.9 mb)
ESM 1 (DOC 1980 kb)

References

  1. Ai, Y. J., Liu, Y., Lan, W. Y., Jin, J. R., Xing, J. L., & Zou, Y. D. (2018). The effect of pH on the U(VI) sorption on graphene oxide (GO): A Theoretical Study. Chemical Engineering Journal,343, 460–466.CrossRefGoogle Scholar
  2. Bedelean, H., Măicăneanu, A., Burcă, S., & Stanca, M. (2009). Removal of heavy metal ions from wastewaters using natural clays. Clay Minerals,44, 487–495.CrossRefGoogle Scholar
  3. Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science,140, 114–131.CrossRefGoogle Scholar
  4. Bian, L., Li, H. L., Li, Y. J., Nie, J. N., Dong, F. Q., Dong, H. L., Bian, L., Li, H., & Li, Y. (2017). Enhanced photovoltage response of hematite-X-ferrite interfaces (X = Cr, Mn, Co, or Ni). Nanoscale Research Letters,12, 136.CrossRefGoogle Scholar
  5. Bian, L., Song, M., Dong, F., Duan, T., Xu, J., & Li, W. (2015). DFT and two-dimensional correlation analysis for evaluating the oxygen defect mechanism of low-density 4f (or 5f) elements interacting with Ca-Mt. RSC Advances,5, 28601–28610.CrossRefGoogle Scholar
  6. Brigatti, M. F., Galán, E., & Theng, B. K. G. (2013). Structures and mineralogy of clay minerals. Pp. 19–86 in: Developments in Clay Science (F. Bergaya, B.K.G. Theng and G. Lagaly, editors). Elsevier, Amsterdam 1, 19–86.Google Scholar
  7. Burns, P. C., Ewing, R. C., & Navrotsky, A. (2012). Nuclear fuel in a reactor accident. Science,335, 1184–1188.CrossRefGoogle Scholar
  8. Campos, B., Aguilar-Carrillo, J., Algarra, M., Gonçalves, M. A., Rodríguez-Castellón, E., & Silva, J. C. (2013). Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material. Applied Clay Science,85, 53–63.CrossRefGoogle Scholar
  9. Chang, J., Ma, J., Ma, Q., Zhang, D., Qiao, N., & Hu, M. (2015). Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Applied Clay Science,119, 132–140.CrossRefGoogle Scholar
  10. Chen, J., Wen, W., Kong, L., Tian, S., Ding, F., & Xiong, Y. (2014). Magnetically separable and durable MnFe2O4 for efficient catalytic ozonation of organic pollutants. Industrial & Engineering Chemistry Research,53, 6297–6306.CrossRefGoogle Scholar
  11. Chen, H., Wang, Y., Zhao, W., Xiong, G., Cao, X., & Dai, Y. (2017). Phosphorylation of graphehe oxide to improve adsorption of U(VI) from aqueous solutions. Journal of Radioanalytical & Nuclear Chemistry,313, 1–15.CrossRefGoogle Scholar
  12. Chen, L., Zhou, C. H., & Fiore, S. (2016). Functional magnetic nanoparticle/clay mineral nanocomposites: Preparation, magnetism and versatile applications. Applied Clay Science,127–128, 143–163.Google Scholar
  13. Choi, J., & Park, J. W. (2005). Competitive adsorption of heavy metals and uranium on soil constituents and microorganism. Geosciences Journal,9, 53–61.CrossRefGoogle Scholar
  14. De, D.J., Folens, K., De, C.J, Meledina, M., Van, T.G., Du, L.G. and Van, D.V.P., (2017) Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption. Journal of Hazardous Materials, 335, 1–9.CrossRefGoogle Scholar
  15. Debasish, D., Sureshkumar, M. K., Siddhartha, K., Mithal, N., & Pillai, C. G. S. (2010). Sorption of uranium on magnetite nanoparticles. Journal of Radioanalytical and Nuclear Chemistry,285, 447–454.CrossRefGoogle Scholar
  16. Deng, J., Chen, Y., Lu, Y., Ma, X., Feng, S., Gao, N., & Li, J. (2017). Synthesis of magnetic CoFe2O4/ordered mesoporous carbon nanocomposites and application in fenton-like oxidation of rhodamine B. Environmental Science and Pollution Research,24, 14396–14408.CrossRefGoogle Scholar
  17. Dhiraj, S., Garima, M., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology,99, 6017–6027.Google Scholar
  18. Dorota, K., Marzena, G., Ievgen, V. P., & Hubicki, Z. B. (2016). Development of new effective sorbents based on nanomagnetite. Nanoscale Research Letters,11, 152.CrossRefGoogle Scholar
  19. Dubinin, M. M. (1960). The Potential Theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews,60, 235–241.CrossRefGoogle Scholar
  20. Fatimah, I., Wang, S., & Wulandari, D. (2011). ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue. Applied Clay Science,53, 553–560.CrossRefGoogle Scholar
  21. Freundlich, H. (1906). Ueber die adsorption in loesungen (Adsorption in solution). Physical Chemistry,57, 384–470.Google Scholar
  22. Gao, X., Liu, X., Zhu, Z., Wang, X., & Xie, Z. (2016). Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays. Scientific Reports,6, 30543–30558.CrossRefGoogle Scholar
  23. Hajjaji, W., Andrejkovicova, S., Pullar, R. C., Tobaldi, D. M., Lopez-Galindo, A., Jammousi, F., Rocha, F., & Labrincha, J. A. (2016). Effective removal of anionic and cationic dyes by kaolinite and TiO2/kaolinite composites. Clay Minerals,51, 19–27.CrossRefGoogle Scholar
  24. He, H., Zong, M., Dong, F., Yang, P., Ke, G., & Liu, M. (2017). Simultaneous removal and recovery of uranium from aqueous solution using TiO2, photoelectrochemical reduction method. Journal of Radioanalytical & Nuclear Chemistry,313, 59–67.CrossRefGoogle Scholar
  25. Hennig, C., Reich, T., Dahn, R., & Scheidegger, A. M. (2002). Structure of uranium sorption complexes at montmorillonite edge sites. Radiochimica Acta, 90, 653–657.CrossRefGoogle Scholar
  26. Hong, H., Kim, J., Fang, X., Hong, S., & Chiang, T. C. (2017). Interfacial stability of ultrathin films of magnetite Fe3O4(111) on Al2O3(001) grown by ozone-assisted molecular-beam epitaxy. Applied Physics Letters,110, 021601.CrossRefGoogle Scholar
  27. Hu, B., Ye, F., & Ren, X. (2016). X-ray absorption fine structure study of enhanced sequestration of U(VI) and Se(IV) by montmorillonite decorated zerovalent iron nanoparticles. Environmental Science: Nano,3, 1460–1472.Google Scholar
  28. Hu, J., Lo, I. M., & Chen, G. (2005). Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir the ACS Journal of Surfaces & Colloids,21, 11173–11179.CrossRefGoogle Scholar
  29. Hu, C., Gao, Z., & Yang, X. (2008). One-pot low temperature synthesis of MFe2O4 (M = Co, Ni, Zn) superparamagnetic nanocrystals. Journal of Magnetism & Magnetic Materials,320, L70–L73.CrossRefGoogle Scholar
  30. Jiang, H., Sun, M., Xu, J., Lu, A., & Shi, Y. (2016). Magnetic Fe3O4 Nanoparticles modified with polyethyleneimine for the removal of Pb(II). Clean Soil Air Water,44, 1146–1153.CrossRefGoogle Scholar
  31. Kalantari, K., Ahmad, M.B., Masoumi, H.R, Shameli, K., Basri, M. and Khandanlou, R. (2015) Rapid and high capacity adsorption of heavy metals by Fe3O4/montmorillonite nanocomposite using response surface methodology: preparation, characterization, optimization, equilibrium isotherms, and adsorption kinetics study. Journal of the Taiwan Institute of Chemical Engineers, 49, 192–198.CrossRefGoogle Scholar
  32. Karamanis, D. T. (1997). An aluminum pillared montmorillonite with fast uptake of strontium and cesium from aqueous solutions. Clays and Clay Minerals,45, 709–717.CrossRefGoogle Scholar
  33. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society,40, 1361–1368.CrossRefGoogle Scholar
  34. Li, Y., Yi, H., Tang, X., Liu, X., Wang, Y., & Cui, B. (2016). Study on the performance of simultaneous desulfurization and denitrification of Fe3O4-TiO2 composites. Chemical Engineering Journal,304, 89–97.CrossRefGoogle Scholar
  35. Li, Y.Z, Wu, S.X., Yu, X.L., Bao, R.M., Wu, Z.K. & Wang, W. (2017) Optimization of pyrolysis efficiency based on optical property of semicoke in terahertz region. Energy, 126, 202–207.Google Scholar
  36. Liu, G., Fang, H., Jing, Z., Li, L., Li, F., & Chen, L. (2014a). Yolk–shell structured Fe3O4@C@F-TiO2, microspheres with surface fluorinated as recyclable visible-light driven photocatalysts. Applied Catalysis B Environmental,150-151, 515–522.CrossRefGoogle Scholar
  37. Liu, S., Xie, J., Su, Q., Du, G., Zhang, S., & Cao, G. (2014b). Understanding Li-storage mechanism and performance of MnFe2O4, by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy,8, 84–94.CrossRefGoogle Scholar
  38. Liu, M., Yang, L., & Zhang, L. (2016). Functionalization of magnetic hollow porous oval shape NiFe2O4 as a highly selective sorbent for the simultaneous determination of five heavy metals in real samples. Talanta,161, 288–296.CrossRefGoogle Scholar
  39. Lu, A. H., Salabas, E. L., & Schüth, F. (2010). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie,46, 1222–1244.CrossRefGoogle Scholar
  40. McKinley, J. P., Zachara, J. M., Smith, S. C., & Turner, G. D. (1995). The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U(VI) to montmorillonite. Clays and Clay Minerals,43, 586–598.CrossRefGoogle Scholar
  41. Min, H. B, & Lee, S. Y. (2010). Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength. Journal of Industrial & Engineering Chemistry,16, 837–841.CrossRefGoogle Scholar
  42. Phumying, S., Labuayai, S., Swatsitang, E., Amornkitbamrung, V., & Maensiri, S. (2013). Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Materials Research Bulletin,48, 2060–2065.CrossRefGoogle Scholar
  43. Pylypchuk, I. V., Kołodyńska, D., Kozioł, M., & Gorbyk, P. P. (2016). Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Research Letters,11, 168.CrossRefGoogle Scholar
  44. Qiu, W., Yang, D., Xu, J., Hong, B., Jin, H., & Jin, D. (2016). Efficient removal of Cr(VI) by magnetically separable CoFe2O4/activated carbon composite. Journal of Alloys and Compounds,678, 179–184.CrossRefGoogle Scholar
  45. Rekhila, G., Trari, M., & Bessekhouad, Y. (2017). Characterization and application of the hetero-junction ZnFe2O4/TiO2 for Cr(VI) reduction under visible light. Applied Water Science,7, 1273–1281.CrossRefGoogle Scholar
  46. Rufyikiri, G., Wannijn, J., Wang, L., & Thiry, Y. (2006). Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris. Environmental Pollution,141, 420–427.CrossRefGoogle Scholar
  47. Sadeghi, S., Azhdari, H., Arabi, H., & Moghaddam, A. Z. (2012). Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. Journal of Hazardous Materials,215-216, 208–216.CrossRefGoogle Scholar
  48. Santos, A. C., Barbosa, S., Pessoa, M. F., Leal, N., & Reboredo, F. (2018). Speciation, mobility and adsorption effects of various metals in sediments in an agricultural area surrounding a uranium ore deposit (Nisa, Portugal). Emirates Journal of Food and Agriculture,30, 503–514.Google Scholar
  49. Singer, D. M., Chatman, S. M., Ilton, E. S., Rosso, K. M., Banfield, J. F., & Waychunas, G. A. (2012). Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface. Environmental Science & Technology,46, 33811–33820.Google Scholar
  50. Singhal, P., Jha, S. K., Pandey, S. P., & Neogy, S. (2017). Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles. Journal of Hazardous Materials,335, 152–161.CrossRefGoogle Scholar
  51. Soliman, A. M., Murad, A. A., Sheikh, E. S. E., Massad, A. M., & Ali, I. M. (2017). Selective removal of uranium from wastewater using sludge collected from refinery wastewater treatment: Equilibrium, thermodynamic and kinetics studies. Journal of Water Process Engineering,19, 267–276.CrossRefGoogle Scholar
  52. Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., & Li, G. (2004). Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society,126, 273–279.CrossRefGoogle Scholar
  53. Tinas, H., Çalişkan, E., Özbek, N., & Akman, S. (2016). Preparation of Fe3O4@ montmorillonite composite as an effective sorbent for the removal of lead and cadmium from wastewater samples. Turkish Journal of Chemistry,40, 974–978.CrossRefGoogle Scholar
  54. Todorov, P. T., & Ilieva, E. N. (2006). Contamination with uranium from natural and anthropological sources. Romanian Journal of Physics,51, 27–40.Google Scholar
  55. Tu, Y., Chan, T., Tu, H., Wang, S., You, C., & Chang, C. (2016). Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles. Chemosphere,148, 452–458.CrossRefGoogle Scholar
  56. Villalobos, M., Trotz, M. A., & Leckie, O. J. (2001). Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb(II), and U(VI) on goethite. Environmental Science & Technology,35, 3849–3856.CrossRefGoogle Scholar
  57. Wang, L., Li, J., Wang, Y., Zhao, L., & Jiang, Q. (2012a). Adsorption capability for congo red on nanocrystalline MFe2O4, (M = Mn, Fe, Co, Ni) spinel ferrites. Chemical Engineering Journal,181-182, 72–79.CrossRefGoogle Scholar
  58. Wang, L., Li, J., Jiang, Q., & Zhao, L. (2012b). Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Transactions,41, 4544–4552.CrossRefGoogle Scholar
  59. Wilke, I., Ramanathan, V., Lachance, J., Tamalonis, A., Aldersley, M., & Joshi, P. C. (2014). Characterization of the terahertz frequency optical constants of montmorillonite. Applied Clay Science,87, 61–65.CrossRefGoogle Scholar
  60. Xiao, J., Chen, Y., & Xu, J. (2014). Plasma grafting montmorillonite/iron oxide composite with β-cyclodextrin and its application for high-efficient decontamination of U(VI). Journal of Industrial and Engineering Chemistry,20, 2830–2839.CrossRefGoogle Scholar
  61. Xuan, S., Zeng, S., Fan, M., Qin, L., & Shu, K. (2010). One-step method of fabricating Fe3O4/Montmorillonite magnetic nanocomposites. Rare Metal Materials & Engineering,39, 165–168.Google Scholar
  62. Xu, S., Zhang, Y., Wang, S., Xu, J., Ding, H., & Li, G. (2013). Structure-enhanced photocatalytic removal of Cr(VI) by a TiO2 superstructure with ultrathin rutile nanorods and abundant {110}faces. European Journal of Inorganic Chemistry,14, 2601–2607.Google Scholar
  63. Yan, L., Li, S., Yu, H., Shan, R., Du, B., & Liu, T. (2016). Facile solvothermal synthesis of Fe3O4/bentonite for efficient removal of heavy metals from aqueous solution. Powder Technology,301, 632–640.CrossRefGoogle Scholar
  64. Yu, X., Huo, C. F., Li, Y. W., Wang, J., & Jiao, H. (2012). Fe3O4 surface electronic structures and stability from GGA+U. Surface Science,606, 872–879.CrossRefGoogle Scholar
  65. Zhang, X., Wang, J., Li, R., Dai, Q., & Liu, L. (2013). Removal of uranium(VI) from aqueous solutions by surface modified magnetic Fe3O4 particles. New Journal of Chemistry,37, 3914–3919.CrossRefGoogle Scholar
  66. Zhou, C. H., & Keeling, J. (2013). Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Applied Clay Science,74, 3–9.CrossRefGoogle Scholar
  67. Zhou, C. H., Zhao, L. Z., Chen, T. H., Ai, Q. W., & Hong, P. H. (2016). Current fundamental and applied research into clay minerals in China. Applied Clay Science,119, 3–7.CrossRefGoogle Scholar
  68. Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science,123, 239–258.CrossRefGoogle Scholar
  69. Zou, H., Song, M., Yi, F., Bian, L., Liu, P., & Zhang, S. (2016). Simulated-sunlight-activated photocatalysis of methyl orange using carbon and lanthanum co-doped Bi2O3-TiO2 composite. Journal of Alloys and Compounds,680, 54–59.CrossRefGoogle Scholar
  70. Zuo, Q., Gao, X., Yang, J., Zhang, P., Chen, G., Li, Y., Shi, K., & Wu, W. (2017). Investigation on the thermal activation of montmorillonite and its application for the removal of U(VI) in aqueous solution. Journal of the Taiwan Institute of Chemical Engineers,80, 754–760.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2019
AE: Chun-Hui Zhou

Authors and Affiliations

  • Xiaoqiang Jiang
    • 1
  • Jianan Nie
    • 2
  • Liang Bian
    • 1
    • 2
    Email author
  • Faqin Dong
    • 1
  • Mianxin Song
    • 1
    Email author
  • Yi He
    • 1
  • Huichao He
    • 1
  • Zhiqin Zheng
    • 1
  • Tingting Huo
    • 1
  • Bowen Li
    • 1
  • Nelson Belzile
    • 1
  • Shuhui Sun
    • 1
  • Hao Zou
    • 1
  1. 1.Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional MaterialsSouth West University of Science and TechnologyMianyangChina
  2. 2.Institute of Gem and Material TechnologyHebei GEO UniversityShijiazhuangChina

Personalised recommendations