Advertisement

3D-Printed Scaffolds with Reinforced Poly (Lactic Acid)/Carbon Nanotube Filaments Based on Melt Extrusion

  • Hye-Been Kim
  • Dinesh K. Patel
  • Yu-Ri Seo
  • Ki-Taek LimEmail author
Original Article
  • 3 Downloads

Abstract

Personalized medicine suitable for individual patients in tissue engineering is a significant challenge. Owing to the recent growth of 3D printing, various methods of building objects have been proposed. However, there is very little information about the mechanical properties of the pieces obtained by controlling the process variables using composite filaments. Fused deposition modeling (FDM) technology was used to fabricate new scaffolds with infill patterns, interconnected channel networks, controllable porosity, and size. Polylactic acid (PLA)/carbon nanotube (CNT) filaments were synthesized using the melt extrusion technique. An improvement in the mechanical properties was observed in composites compared with the pure polymer. Moreover, no toxicity was expressed by stem cells after 24 h of incubation in the presence of composite filaments for a high CNT concentration. Our results will aid in the scaffold design of composite filaments through the modeling of process parameters and mechanical properties.

Keywords

Polylactic acid Melt extrusion Mechanical properties 3D printing 

Notes

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (No. 2018R1A6A1A03025582) and the National Research Foundation of Korea (NRF-2016R1D1 A3B03932921).

Compliance with Ethical Standards

All protocols for human tissue processing were developed in accordance with the legal regulatory guidelines for human tissues and organs in the experimental protocol approved by the Seoul National University (Seoul, South Korea) Institutional Review Board (IRB No. CRI05008)

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

42853_2019_11_MOESM1_ESM.docx (331 kb)
ESM 1 (DOCX 331 kb)

References

  1. F. Asghari., Samiei, M., Adibkia, K., Akbarzadeh., A. and Davaran, S. 2017. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artificial Cells, Nanomedicine, and Biotechnology 45:185–192. doi:  https://doi.org/10.3109/21691401.2016.1146731.
  2. Ayutsede, J., Gandhi, M., Sukigara, S., Micklus, M., Chen, H.-E., & Ko, F. (2005). Regeneration of bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat. Polymer, 46, 1625–1634.  https://doi.org/10.1016/j.polymer.2004.11.029.CrossRefGoogle Scholar
  3. Bacakova, L., Novotná, K., & Parizek, M. (2014). Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction. Physiological Research, 63, S29–S47 PMID: 24564664 (DOI not available).Google Scholar
  4. De la Paz Orozco, A., Vega, F. J., Martel-Estrada, S., Aguilar, A. H., Mendoza-Duarte, M., Chavarría-Gaytán, M., et al. (2016). Development of chitosan/poly (L-lactide)/multiwalled carbon nanotubes scaffolds for bone tissue engineering. Open Journal of Regenerative Medicine, 5, 14–23.  https://doi.org/10.4236/ojrm.2016.51002.CrossRefGoogle Scholar
  5. Do, A. V., Khorsand, B., Geary, S. M., & Salem, A. K. (2015). 3D printing of scaffolds for tissue regeneration applications. Advanced Healthcare Materials, 4, 1742–1762.  https://doi.org/10.1002/adhm.201500168.CrossRefGoogle Scholar
  6. Dondero, W. E., & Gorga, R. E. (2006). Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. Journal of Polymer Science Part B: Polymer Physics, 44, 864–878.  https://doi.org/10.1002/polb.20743.CrossRefGoogle Scholar
  7. Fernández-Tresguerres, I., Hernández-Gil, I., Alobera Gracia, M. A., Canto Pingarrón, M. D., & Blanco Jerez, L. (2006). Bases fisiológicas de la regeneración ósea II: El proceso de remodelado. Medicina Oral, Patología Oraly Cirugía Bucal (Internet), 11(DOI not available), 151–157.Google Scholar
  8. Fernandez-Vicente, M., Calle, W., Ferrandiz, S., & Conejero, A. (2016). Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Printing and Additive Manufacturing, 3, 183–192.  https://doi.org/10.1089/3dp.2015.0036.CrossRefGoogle Scholar
  9. Gorga, R. E., & Cohen, R. E. (2004). Toughness enhancements in poly (methyl methacrylate) by addition of oriented multiwall carbon nanotubes. Journal of Polymer Science Part B: Polymer Physics, 42, 2690–2702.  https://doi.org/10.1002/polb.20126.CrossRefGoogle Scholar
  10. Gregor, A., Filová, E., Novák, M., Kronek, J., Chlup, H., Buzgo, M., Blahnová, V., Lukášová, V., Bartoš, M., Nečas, A., & Hošek, J. (2017). Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. Journal of Biological Engineering, 11, 31–51.  https://doi.org/10.1186/s13036-017-0074-3.CrossRefGoogle Scholar
  11. Gupta, B., Revagade, N., & Hilborn, J. (2007). Poly (lactic acid) fiber: an overview. Progress in Polymer Science, 32, 455–482.  https://doi.org/10.1016/j.progpolymsci.2007.01.005.CrossRefGoogle Scholar
  12. Islam, M., Rojas, E., Bergey, D., Johnson, A., & Yodh, A. (2003). High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters, 3, 269–273.  https://doi.org/10.1021/nl025924u.CrossRefGoogle Scholar
  13. Kim, J.-W., Kotagiri, N., Kim, J.-H., & Deaton, R. (2006). In situ fluorescence microscopy visualization and characterization of nanometer-scale carbon nanotubes labeled with 1-pyrenebutanoic acid, succinimidyl ester. Applied Physics Letters, 88, 213110.  https://doi.org/10.1063/1.2206875.CrossRefGoogle Scholar
  14. Kim, J., Kim, S. W., Choi, S. J., Lim, K. T., Lee, J. B., Seonwoo, H., Choung, P. H., Park, K., Cho, C. S., Choung, Y. H., & Chung, J. H. (2011). A healing method of tympanic membrane perforations using three-dimensional porous chitosan scaffolds. Tissue Engineering Parts A, 17, 2763–2772.  https://doi.org/10.1089/ten.TEA.2010.0533.CrossRefGoogle Scholar
  15. Kim, H.-B., Seo, Y.-R., Chang, K.-J., Park, S.-B., Seonwoo, H., Kim, J. W., et al. (2017). Mechanical and biological characteristics of reinforced 3D printing filament composites with agricultural by-product. Food Engineering Progress., 21, 233–241.  https://doi.org/10.13050/foodengprog.2017.21.3.233.CrossRefGoogle Scholar
  16. Koh, Y.-H., Jun, I.-K., & Kim, H.-E. (2006). Fabrication of poly (ε-caprolactone)/hydroxyapatite scaffold using rapid direct deposition. Materials Letters, 60, 1184–1187.  https://doi.org/10.1016/j.matlet.2005.10.103.CrossRefGoogle Scholar
  17. Lee, H., Ahn, S., Bonassar, L. J., & Kim, G. (2013). Cell (MC3T3-E1)-printed poly (ϵ-caprolactone)/alginate hybrid scaffolds for tissue regeneration. Macromolecular Rapid Communications, 34, 142–149.  https://doi.org/10.1002/marc.201200524.CrossRefGoogle Scholar
  18. Lee, J.-S., Hong, J. M., Jung, J. W., Shim, J.-H., Oh, J.-H., & Cho, D.-W. (2014). 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication, 6, 024103.  https://doi.org/10.1088/1758-5082/6/2/024103.CrossRefGoogle Scholar
  19. Lim, K.-T., Jin, H., Seonwoo, H., Kim, H.-B., Kim, J., Kim, J.-W., Renji, C., Choung, P. H., & Chung, J. H. (2016). Physical stimulation-based osteogenesis: effect of secretion in vitro on fluid dynamic shear stress of human alveolar bone-derived mesenchymal stem cells. IEEE Transactions on Nanobioscience, 15, 881–890.  https://doi.org/10.1109/TNB.2016.2627053.CrossRefGoogle Scholar
  20. McCullen, S. D., Stevens, D. R., Roberts, W. A., Clarke, L. I., Bernacki, S. H., Gorga, R. E., et al. (2007). Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. International Journal of Nanomedicine, 2, 253–263 PMCID: PMC2673972 (DOI not available).Google Scholar
  21. Mozdzen, L. C., Rodgers, R., Banks, J. M., Bailey, R. C., & Harley, B. A. (2016). Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Acta Biomaterialia, 33, 25–33.  https://doi.org/10.1016/j.actbio.2016.02.004.CrossRefGoogle Scholar
  22. Polo-Corrales, L., Latorre-Esteves, M., & Ramirez-Vick, J. E. (2014). Scaffold design for bone regeneration. Journal of Nanoscience and Nanotechnology, 14, 15–56 PMCID: PMC3997175 (DOI not available.CrossRefGoogle Scholar
  23. Zein, I., Hutmacher, D. W., Tan, K. C., & Teoh, S. H. (2002). Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23, 1169–1185.  https://doi.org/10.1016/S0142-9612(01)00232-0.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Agricultural Machinery 2019

Authors and Affiliations

  • Hye-Been Kim
    • 1
  • Dinesh K. Patel
    • 2
  • Yu-Ri Seo
    • 1
  • Ki-Taek Lim
    • 1
    • 2
    Email author
  1. 1.Department of Biosystems Engineering, College of Agriculture and Life SciencesKangwon National UniversityChuncheonRepublic of Korea
  2. 2.The Institute of Forest ScienceKangwon National UniversityChuncheonRepublic of Korea

Personalised recommendations