Advertisement

Journal of Biosystems Engineering

, Volume 23, Issue 1, pp 28–36 | Cite as

Review of Design Trends in Lighting, Environmental Controls, Carbon Dioxide Supplementation, Passive Design, and Renewable Energy Systems for Agricultural Greenhouses

  • Ali Muslim SyedEmail author
  • Caroline Hachem
Review Article
  • 8 Downloads

Abstract

Purpose

The purpose of this article is to present a comprehensive overview of the latest developments in greenhouse design to find the leading design practices that lower the carbon and energy footprint.

Methods

This paper is based on a comprehensive review of existing literature regarding design trends in lighting, environmental controls, carbon dioxide supplementation, passive design features, and renewable energy for agricultural greenhouses.

Results

A systematic review of existing literature on the design trends in lighting, environmental controls, carbon dioxide supplementation, passive design features, and renewable energy options for agricultural greenhouses has been presented.

Conclusions

This systematic review provides a platform for universal greenhouse design guidelines to help promote urban agriculture and ensure food security for cities.

Keywords

Greenhouse carbon dioxide supplementation Greenhouse environmental controls Greenhouse lighting Greenhouse passive design Greenhouse renewable energy 

Nomenclature

ACH

air change per hour

ASHRAE

American Society of Heating, Refrigerating and Air-Conditioning Engineers

CFD

computational fluid dynamics

GHG

greenhouse gas

HVAC

heating, ventilation, and air-conditioning

LEED

Leadership in Energy and Environmental Design (version 4)

PPM

parts per million

PAR

photosynthetic active radiation

RH

relative humidity

VFD

variable frequency drive

Notes

Funding Information

The authors received financial support from the NSERC Discovery Grant.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. AGRIC (Alberta Agriculture and Forestry) (2018a). Components of the greenhouse system for environmental control. Available at: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/opp2892 (2018.12.14).
  2. AGRIC (Alberta Agriculture and Forestry) (2018b). Management of the greenhouse environment. Available at: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/opp2902 (2018.12.14).
  3. ASHRAE Handbook (2017). Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Publications.Google Scholar
  4. ASHRAE/ANSI/IES Standard 90.1 (2016). Energy standard for buildings— Except low rise residential buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers.Google Scholar
  5. ASHRAE/ANSI/IES/USGBC Standard 189.1 (2014). Standard for the design of high performance green buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers.Google Scholar
  6. Bajer, L., & Krejcar, O. (2015). Design and realization of low cost control for greenhouse environment with remote control. International Federation of Automatic Control – Papers Online, 48(4), 368–373.Google Scholar
  7. Benis, K., Reinhart, C., & Ferrao, P. (2017). Development of a simulation-based decision support workflow for the implementation of building-integrated agriculture (BIA) in urban contexts. Journal of Cleaner Production, 147, 589–602.CrossRefGoogle Scholar
  8. Bond B. J., Burns E. R., Pile R. S., & Madewell C. E. (1977). The use of waste heat in greenhouse agriculture. In: Proceedings of International Symposium on Controlled Environment Agriculture. Tucson, Arizona, USA: April 1977.Google Scholar
  9. Briassoulis, D., Waaijenberg, D., Gratraud, J., & von Eslner, B. (1997). Mechanical properties of covering material for greenhouses: Part 1, general overview. Journal of Agricultural Engineering Research (1997), 67, 81–96.CrossRefGoogle Scholar
  10. Bricault, M. (1982). Use of heat surplus from a greenhouse for soil heating. In: Proceedings of the International Conference on Energex, pp. 564–568. Regina 1982.Google Scholar
  11. Candy, S., Moore, G., & Freere, P. (2012). Design and modeling of a greenhouse for a remote region in Nepal. Periodica Engineering, 49, 152–190.Google Scholar
  12. Zwart, H. F. de. 1996. Analyzing energy-saving options in greenhouse cultivation using a simulation model. PhD thesis. Landbouwuniversitet te Wageningen.Google Scholar
  13. Djevia, M., & Dimitrijevic, A. (2008). Energy consumption for different greenhouses structures. Journal of Agricultural Science, 5(1).Google Scholar
  14. Djevia, M., & Dimitrijevic, A. (2009). Energy consumption for different greenhouses constructions. Energy, 34, 1325–1331.CrossRefGoogle Scholar
  15. Dorais, M. (2003). The use of supplemental lighting for vegetable crop production: Light intensity, crop response, nutrition, crop management, cultural practices. In: Canadian Greenhouse Conference. October 9, 2003.Google Scholar
  16. Geoola, F., Kashti, Y., & Peiper, U. M. (1998). A model greenhouse for testing the role of condensation, dust, and dirt on the solar radiation transmissivity of greenhouse cladding materials. Journal of Agricultural Engineering Research, 71, 339–346.CrossRefGoogle Scholar
  17. Ghosal, M. K., Tiwari, G. N., Das, D. K., & Pandey, K. P. (2005). Modeling and comparative thermal performance of ground air collector and earth air heat exchanger for heating of greenhouse. Energy and Buildings, 37, 613;621.CrossRefGoogle Scholar
  18. Gorse, C. A., & Johnston D. (2012). Dictionary of construction, surveying, and civil engineering, 3rd ed. Oxford.Google Scholar
  19. Groh, J. E. (1977). Liquid foam greenhouse insulation and shading techniques. In: Proceedings of International Symposium on Controlled Environment Agriculture. Tucson, Arizona, USA: April 1977.Google Scholar
  20. Jensen, M. H. (1972). The use of waste heat in agriculture. In: Proceedings of National Conference on Waste Heat Utilization. Gatlinburg, Tennessee, USA: 1972.Google Scholar
  21. Kittas, C., & Bartzanas, T. (2007). Greenhouse microclimate and dehumidification effectiveness under different ventilator configuration. Building and Environment, 42, 3774–3784.CrossRefGoogle Scholar
  22. Kittas, C., Karamanis, M., & Katsoulas, N. (2005). Air temperature in a forced ventilated greenhouse with rose crop. Energy and Buildings, 37, 807–812.CrossRefGoogle Scholar
  23. Madewell, C.E. (1975). Using power plant discharge water in greenhouses for vegetable production. Tennessee Valley Authority, Progress Report Bulletin Z-56.Google Scholar
  24. National Energy Code for Buildings (NECB) Canada (2011). National Research Council of Canada. Ottawa, Canada.Google Scholar
  25. Oklahoma State University (2017). Greenhouse carbon dioxide supplementation. Division of Agricultural Sciences and Natural Resources.Google Scholar
  26. Olszewski, M. (1977). Economic aspects of using power plant reject heat for greenhouse heating. In: Proceedings of International Symposium on Controlled Environment Agriculture. Tucson, Arizona, USA: April 1977.Google Scholar
  27. Pasgianos, G. D., Arvanitis, K. G., Polycarpou, P., & Sigrimis, N. (2003). A nonlinear feedback technique for greenhouse environmental control. Computers and Electronics in Agriculture, 40, 153–177.CrossRefGoogle Scholar
  28. Saridakis, G., Kolokotsa, D., & Dolianitis, S. (2006). Development of an intelligent indoor environment and energy management system for greenhouses using a fuzzy logic controller and LonWork® protocol. In: International Workshop on Energy Performance and Environmental Quality of Buildings. Milos Island, Greece: 2006.Google Scholar
  29. Sethi, V. P., & Sharma, S. K. (2007). Survey of cooling technologies for worldwide agricultural greenhouse applications. Solar Energy, 81, 1447–1459.CrossRefGoogle Scholar
  30. Sethi, V. P., & Sharma, S. K. (2008). Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Solar Energy, 82, 832–859.CrossRefGoogle Scholar
  31. Shukla, A., Tiwari, G. N., & Sodha, M. S. (2006). Thermal modeling for a greenhouse heating by using thermal curtain and an earth-air heat exchanger. Building and Environment, 41, 843–850.CrossRefGoogle Scholar
  32. Sonneveld, P., Fempkes, F., & Bot, G. P. A. (2005). Greenhouse with an integrated NIR filter and a solar cooling system. Acta Horticulturae.Google Scholar
  33. van Berkel, N. (1977). CO2 nutrition of greenhouse crops, Glasshouse Crops Research and Experiment Station, Naaldwijk, The Netherlands. In: Proceedings of International Symposium on Controlled Environment Agriculture. Tucson, Arizona, USA: April 1977.Google Scholar
  34. Van den Bulck, N., Coomans, M., Wittemans, L., Hanssens, J., & Steppe, K. (2013). Monitoring and energetic performances analysis of an innovative ventilation concept in a Belgian greenhouse. Energy and Buildings, 57, 51–57.CrossRefGoogle Scholar
  35. van Ooteghem, R. J. C. (2010). Optimal control design for a solar greenhouse. Wageningen UniversityGoogle Scholar
  36. van Straten, G., van Willigenburg G., Henten E., & van Ooteghem R. (2010). Optimal control of greenhouse cultivation. CRC Press.Google Scholar
  37. Vanthoor, B. H. E., Stanghellini, C., van Henten, E. J., & de Visser, P. H. B. (2011). A methodology of model-based greenhouse design: Part 3, sensitivity analysis of a combined greenhouse climate-crop yield model. Biosystems Engineering, 110, 396–412.CrossRefGoogle Scholar
  38. Vanthoor, B. H. E., Stinger, J. D., Stanghellini, C., van Henten, E. J., de Visser, P. H. B., Hemming, S., & Silke. (2012). A methodology of model-based greenhouse design: Part 5, greenhouse design optimization for southern-Spanish and Dutch conditions. Biosystems Engineering, 111, 350–368.CrossRefGoogle Scholar
  39. Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37, 195–222.Google Scholar
  40. von Elsner, B., Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Gratraud, J., Russo, G., & Suay-Cortes, R. (2000a). Review of structural and functional characteristics of greenhouse in European Union countries: Part I, design requirements. Journal of Agricultural Engineering Research, 75, 1–16.CrossRefGoogle Scholar
  41. von Elsner, B., Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Gratraud, J., Russo, G., & Suay-Cortes, R. (2000b). Review of structural and functional characteristics of greenhouse in European Union countries: Part II, typical designs. Journal of Agricultural Engineering Research, 75, 111–126.CrossRefGoogle Scholar
  42. Waaijenberg, D., Hemming, S., & Campen, J. B. (2005). The solar greenhouse: A highly insulated greenhouse design with an inflated roof system with PVDF or ETFE membranes. Acta Horticulturae, 691, ISHS: 2005, 561–568.CrossRefGoogle Scholar
  43. Walker, J. N., Buxton, J. W., Knavel, D. E., & Collins, L. D. (1977). Solar heated greenhouses ventilated with deep mine air. In: Proceedings of International Symposium on Controlled Environment Agriculture. Tucson, Arizona, USA: April 1977.Google Scholar
  44. Welles, D. G. (1977). Sealing a greenhouse for energy conservation. In: Proceedings of International Symposium on Controlled Environment Agriculture. Tucson, Arizona, USA: April 1977.Google Scholar
  45. White, J. W. (1977). Energy conservation for greenhouses. In: Proceedings of International Symposium on Controlled Environment Agriculture. Tucson, Arizona, USA: April 1977.Google Scholar
  46. Winspear, K. W., & Bailey B. J. (1977). Greenhouse thermal screens save fuel. In: Proceedings of International Symposium on Controlled Environment Agriculture. Tucson, Arizona, USA: April 1977.Google Scholar

Copyright information

© The Korean Society for Agricultural Machinery 2019

Authors and Affiliations

  1. 1.Solar Energy and Community Design Lab, Faculty of Environmental DesignUniversity of CalgaryCalgaryCanada
  2. 2.Solar Energy and Community Design Lab, Faculty of Environmental DesignUniversity of CalgaryCalgaryCanada

Personalised recommendations