Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A New Method for a Fractal-Type Temperature Sensor Using Cellular Oscillatory Networks

  • 16 Accesses


A new fractal temperature sensor structure using simple cellular oscillatory networks is proposed. The frequency of the cellular oscillatory networks is analyzed in terms of threshold voltage and mobility, and then expressed as a function of temperature. In order to validate this new method, sensor networks with 405 inverters is used in the network, but it can be expanded infinitely in two-dimensional or even three-dimensional fractal structure. Through simulations, we found that local temperature change yields an instant global frequency drift in the fractal structure. For analysis, we used VLSI simulations with specifically BSIM4 model parameters (level54 using HSPICE). Compared with other temperature sensors, this structure significantly increased operating sensing range, − 50 °C to + 150 °C, with maximum 6 μW power consumption. With standard 100 nm CMOS MOSFET devices, less than ± 1.8 °C (0.9%) sensing accuracy, with 1 V supply voltage was achieved.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Malits M, Brouk I, Nemirovsky Y (2018) Study of CMOS-SOI integrated temperature sensing circuits for on-chip temperature monitoring. Sensors 18(5):1629

  2. 2.

    Park Y, Kim H, Ko Y, Mun Y, Lee S, Kim J-H, Ko H (2017) Low noise CMOS temperature sensor with on-chip digital calibration. Sens Mater 29(7):1025–1030

  3. 3.

    Na J-S, Shin W, Kwak B-C, Hong S-K, Kwon O-K (2017) A CMOS-based temperature sensor with subthreshold operation for low-voltage and low-power on-chip thermal monitoring. J Semicond Technol Sci 17(1):29–34

  4. 4.

    Choi W, Kim S, Heo K, Moon G (2015) Design of CMOS GHz cellular oscillator/distributor network supply voltage and ambient temperature insensitivities. Adv Sci Technol Lett Ubiquit Sci Eng 86:52–57

  5. 5.

    Kim S-J, Choi W-Y, Heo K-I, Moon G (2015) A frequency-shift keying modulation technique using a fractal ring-oscillator. Int J Multimed Ubiquit Eng 10(11):397–406

  6. 6.

    Peng T et al (2019) A uniform modeling method based on open-circuit faults analysis for NPC-three-level converter. IEEE Trans Circuits Syst II Express Br 66(3):457–461

  7. 7.

    Heo K-I, Kim S-J, Kim H-S, Moon G (2016) GHz level clock synchronization technique with supply voltage variation insensitivity. Asia-Pac Proc Appl Sci Eng Better Human Life ASEHL Ser 4:41–44

  8. 8.

    Nair KK, Jose J, Ravindran A (2016) Analysis of temperature dependent parameters on solar cell efficiency using MATLAB. IJDER 4(3):536–541

  9. 9.

    Mandal MK, Sarkar BC (2010) Ring oscillators: characteristics and applications. Indian J Pure Appl Phys 48:136–145

  10. 10.

    Weste N, Eshraghian K (1992) Principles of CMOS VLSI design: a systems perspective, 2nd edn. Addison Wesley Longman, pp 119-157

  11. 11.

    Jacob Baker R (2010) CMOS. Circuit design, layout, and simulation, 3rd edn. Wiley, Hoboken, pp 331–352

  12. 12.

    Xi X et al (2003) BSIM4.3.0 MOSFET model user’s manual. University of California, Berkeley, pp 5.1–5.20

  13. 13.

    Reed D (2012) Bose–Einstein condensate-hidden riches for new forms of technology and energy generation; potential for glimpse into inner reality. Phys Proc 38:136–149

  14. 14.

    Matsuda T, Minami R, Kanamori A, Iwata H, Ohzone T, Yamamoto S, Ihara T, Nakajima S (2004) A VDD and temperature independent CMOS voltage reference circuit. In: Proceedings of IEEE Asia-South Pacific design automation conference, pp 559–560

  15. 15.

    Chen P, Chen T-K, Wang Y-S, Chen C-C (2009) A time-domain sub-micro Watt temperature sensor with digital set-point programing. IEEE Sens J 9(12):1639–1646

  16. 16.

    Chouhan SS, Halonen K (2015) Design and implementation of micro-power temperature to duty cycle converter using differential temperature sensing. Microelectron J 46(6):482–489

  17. 17.

    Wang B, Law M-K, Bermak A, Luong HC (2014) A passive RFID tag embedded temperature sensor with improved process spreads immunity for a −30 °C to 60 °C sensing range. IEEE Trans Circuits Syst I Reg Pap 61(2):337–346

  18. 18.

    Yin J et al (2010) A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor. IEEE J Solid-State Circuits 45(11):2404–2420

  19. 19.

    Deng F, He Y, Li B, Zhang L, Wu X, Fu Z, Zuo L (2015) Design of an embedded CMOS temperature sensor for passive RFID tag chips. Sensors 15(5):11442–11453

Download references


This work was supported by Hallym University, HRF-201706-012, ChunCheon, Korea.

Author information

Correspondence to Gyu Moon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Moon, G. A New Method for a Fractal-Type Temperature Sensor Using Cellular Oscillatory Networks. J. Electr. Eng. Technol. (2020).

Download citation


  • Temperature sensor
  • Ring oscillator
  • Cellular oscillatory networks
  • Fractal
  • CMOS