Advertisement

Adaptive Variable Impulsive Synchronization of Multi-agent Systems

  • Like Gao
  • Jing Xiao
  • Xiaoxuan GuoEmail author
  • Shifeng Ou
  • Yangjun Zhou
  • Ning Wu
  • Yubin Feng
  • Zhiyang Yao
Original Article
  • 5 Downloads

Abstract

This paper is concerned with the adaptive synchronization of multi-agent systems via variable impulsive control method. Based on the theory of impulsive differential equations, adaptive control technique, Lyapunov stability theory and comparison system method, some novel adaptive synchronization conditions with impulsive time window are given to realize the synchronization of multi-agent nonlinear systems with uncertain parameters. Different from the existing investigations of impulsive synchronization of multi-agent systems, the proposed impulsive control protocol with impulsive time window is more effective in practical systems. Finally, two simulation results demonstrate the validity of the theoretical results.

Keywords

Multi-agent systems Synchronization Variable impulsive control Comparison system method Adaptive control 

Notes

References

  1. 1.
    Wang YW, Liu XK, Xiao JW, Shen YJ (2018) Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control. Automatica 93:26–32MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ma TD (2015) Synchronization of multi-agent stochastic impulsive perturbed chaotic delayed neural networks with switching topology. Neurocomputing 151:1392–1406CrossRefGoogle Scholar
  3. 3.
    Ma TD, Lewis FL, Song YD (2016) Exponential synchronization of nonlinear multi-agent systems with time delays and impulsive disturbances. Int J Robust Nonlinear Control 26:1615–1631MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wang YW, Wei YW, Liu XK, Zhou N, Cassandras CG (2018) Optimal persistent monitoring using second-order agents with physical constraints. IEEE Trans Autom Control.  https://doi.org/10.1109/tac.2018.2879946 CrossRefzbMATHGoogle Scholar
  5. 5.
    Yang DS, Pang YH, Zhou BW, Li K (2019) Fault diagnosis for energy internet using correlation processing-based convolutional neural networks. IEEE Trans Syst Man Cybern Syst 49:1739–1748.  https://doi.org/10.1109/tsmc.2019.2919940 CrossRefGoogle Scholar
  6. 6.
    Lewis FL, Cui B, Ma TD, Song YD, Zhao CH (2016) Heterogeneous multi-agent systems: reduced-order synchronization and geometry. IEEE Trans Autom Control 61(5):1391–1396MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liu ZW, Saberi A, Stoorvogel AA, Zhang MR (2018) Passivity-based state synchronization of homogeneous multi-agent systems via static protocol in the presence of input saturation. Int J Robust Nonlinear Control 28(7):2720–2741CrossRefGoogle Scholar
  8. 8.
    Cui B, Zhao CH, Ma TD, Feng C (2017) Leaderless and leader-following consensus of multi-agent chaotic systems with unknown time delays and switching topologies. Nonlinear Anal Hybrid Syst 24:115–131MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liu ZW, Stoorvogel AA, Saberi A, Nojavanzadeh D (2019) Squared-down passivity based state synchronization of homogeneous continuous-time multi-agent systems via static protocol in presence of time-varying topology. Int J Robust Nonlinear Control 29:3821–3840.  https://doi.org/10.1002/rnc.4585 CrossRefzbMATHGoogle Scholar
  10. 10.
    Ma TD, Li T, Cui B (2018) Coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control. Int J Syst Sci 49(1):1–14MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wang FY, Liu ZX, Cheng ZQ (2018) A novel leader-following consensus of multi-agent systems with smart leader. Int J Control Autom Syst 16(4):1483–1492CrossRefGoogle Scholar
  12. 12.
    Ma TD, Cui B, Wang YJ, Liu K (2019) Stochastic synchronization of delayed multi-agent networks with intermittent communications: an impulsive framework. Int J Robust Nonlinear Control 29(13):4537–4561CrossRefGoogle Scholar
  13. 13.
    Wang YW, Lei Y, Bian T, Guan ZH (2019) Distributed control of nonlinear multi-agent systems with unknown and nonidentical control directions via event-triggered communication. IEEE Trans Cybern 1:1.  https://doi.org/10.1109/tcyb.2019.2908874 CrossRefGoogle Scholar
  14. 14.
    Shen Y, Li F, Zhang D, Wang YW, Liu Y (2019) Event-triggered output feedback H∞ control for networked control systems. Int J Robust Nonlinear Control 29(1):166–179MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu ZW, Zhang MR, Saberi A, Stoorvogel AA (2018) State synchronization of multi-agent systems via static or adaptive nonlinear dynamic protocols. Automatica 95:316–327MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fu J, Bai JF, Lai JJ, Li PD, Yu M, Lam HK (2019) Adaptive fuzzy control of a magnetorheological elastomer vibration isolation system with time-varying sinusoidal excitations. J Sound Vib 456:386–406CrossRefGoogle Scholar
  17. 17.
    Morstyn T, Savkin AV, Hredzak B, Agelidis VG (2018) Multi-agent sliding mode control for state of charge balancing between battery energy storage systems distributed in a DC microgrid. IEEE Trans Smart Grid 9(5):4735–4743CrossRefGoogle Scholar
  18. 18.
    Zhao L, Yu JP, Lin C, Yu HS (2017) Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode. Appl Math Comput 312:23–35MathSciNetzbMATHGoogle Scholar
  19. 19.
    Wang Y, Ma ZJ, Zheng S, Chen GR (2017) Pinning control of lag-consensus for second-order nonlinear multi-agent systems. IEEE Trans Cybern 47(8):2203–2211CrossRefGoogle Scholar
  20. 20.
    Lu JQ, Ding CD, Lou JG, Cao JD (2015) Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers. J Franklin Inst 352(11):5024–5041MathSciNetCrossRefGoogle Scholar
  21. 21.
    Huang WC, Huang YW, Chen SB (2018) Robust consensus control for a class of second-order multi-agent systems with uncertain topology and disturbances. Neurocomputing 313:426–435CrossRefGoogle Scholar
  22. 22.
    Yang DS, Li T, Zhang HG, Xie XP (2019) Event-trigger-based robust control for nonlinear constrained-input systems using reinforcement learning method. Neurocomputing 349:158–170CrossRefGoogle Scholar
  23. 23.
    Ao WG, Ma TD, Sanchez RV, Gan HT (2019) Finite-time and fixed-time impulsive synchronization of chaotic systems. J Franklin Inst.  https://doi.org/10.1016/j.jfranklin.2019.07.023 CrossRefGoogle Scholar
  24. 24.
    Ma TD, Zhang ZL, Cui B (2018) Adaptive consensus of multi-agent systems via odd impulsive control. Neurocomputing 321:139–145CrossRefGoogle Scholar
  25. 25.
    Ma TD, Fu J (2011) On the exponential synchronization of stochastic impulsive chaotic delayed neural networks. Neurocomputing 74(5):857–862CrossRefGoogle Scholar
  26. 26.
    Li XD, Wu JH (2018) Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay. IEEE Trans Autom Control 63(1):306–311MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ma TD, Zhang ZL, Cui B (2019) Variable impulsive consensus of nonlinear multi-agent systems. Nonlinear Anal Hybrid Syst 31:1–18MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang X, Wang H, Li CD, Huang TW (2017) Stability analysis of hybrid neural networks with impulsive time window. Int J Biomath 10(1):1750011MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zou LM, Peng Y, Feng YM, Tu ZW (2018) Impulsive control of nonlinear systems with impulse time window and bounded gain error. Nonlinear Anal Model Control 23(1):40–49MathSciNetCrossRefGoogle Scholar
  30. 30.
    Feng YM, Yu JZ, Li CD, Huang TW, Che HJ (2017) Linear impulsive control system with impulse time windows. J Vib Control 23(1):111–118MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhou YH, Li CD, Huang TW, Wang X (2017) Impulsive stabilization and synchronization of Hopfield-type neural networks with impulse time window. Neural Comput Appl 28(4):775–782CrossRefGoogle Scholar
  32. 32.
    Feng YM, Li CD, Huang TW (2016) Periodically multiple state-jumps impulsive control systems with impulse time windows. Neurocomputing 193:7–13CrossRefGoogle Scholar
  33. 33.
    Wang X, Wang H, Li CD, Huang TW (2016) Synchronization of coupled delayed switched neural networks with impulsive time window. Nonlinear Dyn 84(3):1747–1757MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sun JT, Zhang YP, Wu QD (2003) Less conservative conditions for asymptotic stability of impulsive control systems. IEEE Trans Autom Control 48(5):829–831CrossRefGoogle Scholar
  35. 35.
    Tan J, Li CD, Huang TW (2018) Comparison system method for a class of stochastic systems with variable-time impulses. Int J Control Autom Syst 16(2):702–708CrossRefGoogle Scholar
  36. 36.
    Feng YM, Li CD (2017) Comparison system of impulsive control system with impulse time windows. J Intell Fuzzy Syst 32(6):4197–4204CrossRefGoogle Scholar
  37. 37.
    Tan J, Li CD, Huang TW (2015) Stability of impulsive systems with time window via comparison method. Int J Control Autom Syst 13(6):1346–1350CrossRefGoogle Scholar
  38. 38.
    Ma TD, Li T, Cui B (2018) Adaptive impulsive consensus of multi-agent systems. Int J Robust Nonlinear Control 28(6):2031–2046CrossRefGoogle Scholar
  39. 39.
    Ai XL, Yu JQ, Jia ZY, Shen YC, Ma PB, Yang D (2017) Adaptive robust consensus tracking for nonlinear second-order multi-agent systems with heterogeneous uncertainties. Int J Robust Nonlinear Control 27(18):5082–5096MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ma TD, Yu TT, Cui B (2018) Adaptive synchronization of multi-agent systems via variable impulsive control. J Franklin Inst 355(15):7490–7508MathSciNetCrossRefGoogle Scholar
  41. 41.
    Wang R, Dong XW, Li QD, Ren Z (2017) Distributed adaptive control for time-varying formation of general linear multi-agent systems. Int J Syst Sci 48(16):3491–3503MathSciNetCrossRefGoogle Scholar
  42. 42.
    Shilnik LP (1994) Chua’s circuit: rigorous result and future problems. Int J Bifurc Chaos 3:489–519MathSciNetCrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  1. 1.Electric Power Research Institute of Guangxi Power Grid Co., Ltd.NanningChina

Personalised recommendations