Journal of Electrical Engineering & Technology

, Volume 14, Issue 6, pp 2399–2408 | Cite as

Analysis and Comparison of Topological Configurations for All-Metal Induction Cookers

  • Eunsu Jang
  • Sang Min Park
  • Dongmyoung Joo
  • Hyo Min Ahn
  • Byoung Kuk LeeEmail author
Original Article


In this study, three system approaches for implementing an all metal induction cooker are compared and analyzed. To perform equal and quantitative comparisons and analyses, the resonant network of each system is designed under equal input/output conditions using the same power semiconductor devices. Based on the comparison and analysis results, the appropriate method is applied to a 3.2 kW prototype to confirm the heat transfer efficiency, which can be estimated by measuring boiling time. In addition, improvements of the recommended control methods are discussed.


Induction heating All-metal induction heating Resonant network design Inverter Series resonant converter 



This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Korea. (No. 20184030202190). This work was supported by the Korea Institute of Energy.


  1. 1.
    Acero J, Burdio JM, Barragán LA et al (2010) Domestic induction appliances: an overview of recent research. IEEE Ind Appl Magn 16(2):39–47CrossRefGoogle Scholar
  2. 2.
    Hirokawa T, Hiraki E, Tanaka T, Okamoto M, Nakaoka M (2012) The practical evaluations of time-sharing high-frequency resonant soft switching inverter for all metal IH cooking appliances. In: Proceedings of IEEE annual conference of the industrial electronics society, pp 3302–3307Google Scholar
  3. 3.
    Park HP, Jung JH (2018) Load-adaptive modulation of a series resonant inverter for all-metal induction heating applications. IEEE Trans Ind Electron 65(9):6983–6993MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lucia O, Burdio JM, Millan I, Acero J, Puyal D (2009) Load-adaptive control algorithm of half-bridge series resonant inverter for domestic in duction heating. IEEE Trans Ind Electron 56(8):3106–3116CrossRefGoogle Scholar
  5. 5.
    Kamli M, Yamamoto S, Abe M (1996) A 50–150 kHz half-bridge inverter for induction heating applications. IEEE Trans Ind Electron 43(1):163–172CrossRefGoogle Scholar
  6. 6.
    Han W, Chau KT, Jiang C, Liu W (2018) All-metal domestic induction heating using single-frequency double-layer coils. IEEE Trans Magn 54(11):1–5Google Scholar
  7. 7.
    Millan I, Burdio JM, Acero J, Lucia O, Llorente S (2011) Series resonant inverter with selective harmonic operation applied to all-metal domestic induction heating. IET Power Electron 4(5):587–592CrossRefGoogle Scholar
  8. 8.
    Tanaka T (1989) A new induction cooking range for heating any kind of metal vessels. IEEE Trans Consum Electron 35(3):635–641CrossRefGoogle Scholar
  9. 9.
    Sung BG (1999) Design of a high frequency high efficiency series-resonant inverter for induction heating. M.S. thesis, Dept. of Elect. Eng., Pusan National Univ., Pusan, KoreaGoogle Scholar
  10. 10.
    Lope I, Acero J, Carretero C (2016) Analysis and optimization of the efficiency of induction heating applications with litz-Wire planar and solenoidal coils. IEEE Trans Power Electron 31(7):5089–5101CrossRefGoogle Scholar
  11. 11.
    Acero J, Carretero C, Lucia O, Alonso R, Burdio JM (2013) Mutual impedance of small ring-type coils for multiwinding induction heating appliances. IEEE Trans Power Electron 28(2):1025–1035CrossRefGoogle Scholar
  12. 12.
    Hamalainen H, Pyrhonen J, Nerg J, Talvitie J (2014) AC resistance factor of litz-wire windings used in low-voltage high-power generators. IEEE Trans Ind Electron 61(2):693–700CrossRefGoogle Scholar
  13. 13.
    Sullivan CR (1999) Optimal choice for number of strands in a litz-wire transformer winding. IEEE Trans Power Electron 14(2):283–291CrossRefGoogle Scholar
  14. 14.
    Sullivan CR, Zhang RY (2014) Simplified design method for litz wire. In: Proceedings of IEEE applied power electronics conference and exposition, pp 2667–2674Google Scholar
  15. 15.
    International Electrotechnical Commission Standard, IEC 60335-2-9 (2012)Google Scholar
  16. 16.
    Graovac D, Purschel M, Kiep A (2006) MOSFET power losses calculation using the data-sheet parameters. In: Infineon application noteGoogle Scholar
  17. 17.
    Ren Y, Xu M, Zhou J, Lee F (2006) Analytical loss model of power MOSFET. IEEE Trans Power Electron 21(2):310–319CrossRefGoogle Scholar
  18. 18.
    International Electrotechnical Commission Standard, IEC 61000-3-2 (2018)Google Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  • Eunsu Jang
    • 1
  • Sang Min Park
    • 1
  • Dongmyoung Joo
    • 2
  • Hyo Min Ahn
    • 1
  • Byoung Kuk Lee
    • 1
    Email author
  1. 1.Department of Electrical and Computer EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.Intelligent Mechatronics Research CenterKorea Electronics Technology InstituteBucheonKorea

Personalised recommendations