Advertisement

Journal of Electrical Engineering & Technology

, Volume 14, Issue 6, pp 2595–2606 | Cite as

An Improved Generalized Finite Element Method for Electrical Resistance Tomography Forward Model

  • Bo Li
  • Jian Ming Wang
  • Qi WangEmail author
  • Xiaojie Duan
  • Xiuyan Li
Original Article
  • 10 Downloads

Abstract

Electrical resistance tomography is a noninvasive imaging modality, where imperceptible currents are applied to the skin and the resulting surface voltages are measured. It has the potential to be of great value in industrial applications. One of the major problem of forward problem is its low efficiency of finite element computation in electrical resistance tomography and high demand in computational cost for industrial application. An advanced approach is proposed by generalizing the finite element method firstly and then using PSO-SA algorithm to optimize the topology of FE model. Compared with conventional FEM or normal GFEM, a smaller number of nodes and elements with the proposed approach are required to achieve the same accuracy. The novelty of this paper relies on the first to generalize the finite mesh and optimize its topology in accordance with dissection results. Experiments from both simulation and prototype results demonstrate that it is capable of achieving better accuracy using less computational cost with the proposed approach.

Keywords

Electrical resistance tomography GFEM PSO-SA Industrial applications 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant nos. 61402330,61405143, 61373104, 61872269, 61601324), Natural Science Foundation of Tianjin Municipal Science and Technology Commission (18JCYBJC85300), Tianjin enterprise science and technology correspondent project (18JCTPJC61600).

References

  1. 1.
    Jehl M, Dedner A, Betcke T (2015) Fast parallel solver for the forward problem in electrical impedance tomography. IEEE Trans Biomed Eng 62(1):126–137CrossRefGoogle Scholar
  2. 2.
    Li X, Wei T, Wang D (2016) Study of gas-liquid two-phase flow patterns of self-excited dust Scrubbers. Chem Eng Sci 151:79–92CrossRefGoogle Scholar
  3. 3.
    Zhu Y, Kuo A-Y (2006) Finite element modeling and multigrid preconditioner using adaptive triangular meshes. IEEE Microw Wirel Compon Lett 16(6):357–359CrossRefGoogle Scholar
  4. 4.
    Kim S, Wang RL, Khambampati AK (2014) An improved boundary distributed source method for electrical resistance tomography forward problem. Eng Anal Bound Elem 44:185–192MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baumann CE, Oden J (1999) A discontinuous hp finite element method for convection-diffusion problems. Comput Methods Appl Mech Eng 175(2):311–321MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhang L, Tian P, Jin X, Tong W (2010) Numerical simulation of forward problem for electrical capacitance tomography using element-free Galerkin method. Eng Anal Bound Elem 34:477–482CrossRefGoogle Scholar
  7. 7.
    Zhang S, Xu G, Zhang X, Zhang B, Wang H, Xu Y et al (2012) Computation of a 3-D model for lung imaging with electrical impedance tomography. IEEE Trans Magn 2(2):651–654CrossRefGoogle Scholar
  8. 8.
    Zhang X, Guizhi X, Zhang S, Li Y, Guo Y, Li Y, Wang Y, Yan W (2014) A numerical computation forward problem model of electrical impedance tomography based on generalized finite element method. IEEE Trans Magn 50(2):1045–1048CrossRefGoogle Scholar
  9. 9.
    Hyvonnen N (2007) Application of the factorization method to the characterization of weak inclusions in electrical impedance tomography. Adv Appl Math 39(2):197–221MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wu KJ, Dong XZ et al (2011) The factorization method for EIT. Chin J Med Phys 28(1):2437–2440MathSciNetGoogle Scholar
  11. 11.
    Tan C, Guizhi X (2013) Boundary image reconstruction based on the nonmonotonic and self-adaptive trust region method for electrical impedance tomography. Phys Meas 34(8):951–962CrossRefGoogle Scholar
  12. 12.
    Wang H, Guizhi X, Zhang S, Yan W (2015) Optimized excitation mode for generalized back projection algorithm in 3-D EIT. IEEE Trans Magn 51(3):510–514CrossRefGoogle Scholar
  13. 13.
    Zhang S, Zhang X, Wang H, Zhao M, Li Y, Guizhi X, Yan W (2016) Forward solver in magnetoacoustic tomography with magnetic induction by generalized finite element method. IEEE Trans Magn 52(3):702–707Google Scholar
  14. 14.
    Li X, Li X, Zhu S, He B (2009) Solving the forward problem of magnetoacoustic tomography with magnetic induction by means of the finite elementmethod. Phys Med Biol 54(9):2667–2682CrossRefGoogle Scholar
  15. 15.
    Jinbiao W, Zheng H (2017) Uniform convergence of multigrid methods for adaptive meshes. Appl Numer Math 113(1):109–123MathSciNetzbMATHGoogle Scholar
  16. 16.
    Babaeizadeh S, Brooks DH, Isaacson D (2006) Electrode boundary conditions and experimental validation for BEM-based EIT forward and inverse solutions. IEEE Trans Med Imaging 25(9):1180–1188CrossRefGoogle Scholar
  17. 17.
    Parsons D, Coutinho A (1999) Finite element multi-grid methods for two-phase immiscible flow in heterogeneous media. Commun Numer Methods Eng 15(1):1–7CrossRefGoogle Scholar
  18. 18.
    Hou W, Zhang S, Wu H, Guo Y, Xu G (2015) The effect of electrical anisotropy and acoustic inhomogeneous in magnetoacoustic tomography with magnetic induction. In: The 20th international conference on the computation of electromagnetic fields, vol 1, no 1. pp 641–647Google Scholar
  19. 19.
    Amel L (2017) Multivariable systems model reduction based on the dominant modes and genetic algorithm. IEEE Trans Ind Electron 64(2):1617–1619CrossRefGoogle Scholar
  20. 20.
    Han G, Gangrong Q, Jiang M (2016) Relaxation strategy for the Landweber method. Signal Process 125(1):87–96CrossRefGoogle Scholar
  21. 21.
    Jianming W, Bo L, Qi W (2017) Measurement of gas/liquid two-phase flow velocity based on lifting wavelet time delay estimation. Chin J Sci Instrum 38(3):653–663Google Scholar
  22. 22.
    Chen X, Lv X, Meng D (2014) Experimental verification of depolarization effects in bioelectrical impedance measurement. Biomed Mater Eng 24:3675–3683Google Scholar
  23. 23.
    Chen X, Yang T, Yang Y (2001) A PXI-based biomedical electrical impedance tomography system. Appl Mech Mater 670:1205–1209Google Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  • Bo Li
    • 2
  • Jian Ming Wang
    • 3
  • Qi Wang
    • 1
    Email author
  • Xiaojie Duan
    • 1
  • Xiuyan Li
    • 1
  1. 1.Department of Electrical InformationTianJin Polytechnic UniversityXiqingChina
  2. 2.Department of Mechanical EngineeringTianJin Polytechnic UniversityXiqingChina
  3. 3.Department of Computer Science and SoftwareTianJin Polytechnic UniversityXiqingChina

Personalised recommendations