A Novel Hybrid Control Strategy for an Underactuated 3-D Biped with Asymmetric Structure

  • Hai-hui Yuan
  • Yi-min Ge
  • Chun-biao GanEmail author
Original Article


In reality, due to the manufacturing error or the component loss in the service process, the structural parameters of bipedal robots may exhibit asymmetry. In this work, we consider the stable walking of an underactuated 3-D bipedal robot with asymmetric structure, and a novel hybrid control strategy is proposed. The control strategy consists of a continous heuristic motion controller, which asymptotically drive the state of the robot to the zero dynamics manifold, and an event-based feedback controller that renders the hybrid zero dynamics locally asymptotically stable. The heuristic motion controller uses heuristic state variables as controlled variables rather than simply the actuated variables, and the controller parameters of the event-based feedback controller are designed in an analytical method rather than relying on the left–right symmetry property. The effectiveness of the presented control strategy is illustrated by a numerical simulation example.


3-D biped Asymmetric structure Feedback control Asymptotical stability 



This work is partially supported by the National Natural Science Foundation of China under Grant Nos. 91748126 and 11772292 and the Science Fund for Creative Research Groups of National Natural Science Foundation of China under Grant No. 51521064.


  1. 1.
    Chen X, Zhangguo YU, Zhang W, Zheng Y, Huang Q, Ming A (2017) Bio-inspired control of walking with toe-off, heel-strike and disturbance rejection for a biped robot. IEEE Trans Ind Electron 64(10):7962–7971CrossRefGoogle Scholar
  2. 2.
    Manchester IR, Mettin U, Iida F, Tedrake R (2011) Stable dynamic walking over uneven terrain. Int J Robot Res 30(3):265–279CrossRefzbMATHGoogle Scholar
  3. 3.
    Dai H, Tedrake R (2017) Planning robust walking motion on uneven terrain via convex optimization. In: IEEE-RAS international conference on humanoid robots, Cancun, MexicoGoogle Scholar
  4. 4.
    Hong YD, Lee KB (2016) Dynamic simulation of modifiable bipedal walking on uneven terrain with unknown height. J Electr Eng Technol 11(3):733–740CrossRefGoogle Scholar
  5. 5.
    Lee WK, Chwa D, Hong YD (2016) Control strategy for modifiable bipedal walking on unknown uneven terrain. J Electr Eng Technol 11(6):1787–1792CrossRefGoogle Scholar
  6. 6.
    Hirose M, Ogawa K (2007) Honda humanoid robots development. Philos Trans R Soc A Math Phys Eng Sci 365(1850):11–19CrossRefGoogle Scholar
  7. 7.
    Kuindersma S, Deits R, Fallon M, Dai H, Permenter F, Koolen T, Marion P, Tedrake R (2016) Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton Robots 40(3):429–455CrossRefGoogle Scholar
  8. 8.
    Shiriaev AS, Freidovich LB, Gusev SV (2010) Transverse linearization for controlled mechanical systems with several passive degrees of freedom. IEEE Trans Autom Control 55(4):893–906MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Vukobratović M, Borovac B (2004) Zero-moment point—thirty five years of its life. Int J Humanoid Robot 1(01):157–173CrossRefGoogle Scholar
  10. 10.
    Luat TH, Kim YT (2017) Fuzzy control for walking balance of the biped robot using ZMP criterion. Int J Humanoid Robot 14(2):1750002CrossRefGoogle Scholar
  11. 11.
    Kim YJ, Lee JY, Lee JJ (2016) A force-resisting balance control strategy for a walking biped robot under an unknown, continuous force. Robotica 34(7):1495–1516MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hong YD, Kim JH (2013) 3-D command state-based modifiable bipedal walking on uneven terrain. IEEE/ASME Trans Mechatron 18(2):657–663CrossRefGoogle Scholar
  13. 13.
    Hu Y, Lin Z (2016) Balance control of planar biped robots using virtual holonomic constraints. Robotica 34(6):1227–1242CrossRefGoogle Scholar
  14. 14.
    Alghooneh M, Wu CQ, Esfandiari M (2016) A passive-based physical bipedal robot with a dynamic and energy-efficient gait on the flat ground. IEEE/ASME Trans Mechatron 21(4):1977–1984CrossRefGoogle Scholar
  15. 15.
    Dehghani R, Fattah A (2010) Stability analysis and robust control of a planar underactuated biped robot. Int J Humanoid Robot 7(04):535–563CrossRefGoogle Scholar
  16. 16.
    Hamed KA, Buss BG, Grizzle JW (2016) Exponentially stabilizing continuous time controllers for periodic orbits of hybrid systems: application to bipedal locomotion with ground height variations. Int J Robot Res 35(8):977–999CrossRefGoogle Scholar
  17. 17.
    Dehghani R, Fattah A, Abedi E (2015) Cyclic gait planning and control of a five-link biped robot with four actuators during single support and double support phases. Multibody Syst Dyn 33(4):389–411MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gupta S, Kumar A (2017) A brief review of dynamics and control of underactuated biped robots. Adv Robot 365:1–17Google Scholar
  19. 19.
    La Hera P, Shiriaev AS, Freidovich LB, Mettin U, Gusev SV (2013) Stable walking gaits for a three-link planar biped robot with one actuator. IEEE Trans Robot 29(3):589–601CrossRefGoogle Scholar
  20. 20.
    Yazdi-Mirmokhalesouni SD, Sharbafi MA, Yazdanpanah MJ, Nili-Ahmadabadi M (2017) Modeling, control and analysis of a curved feet compliant biped with HZD approach. Nonlinear Dyn 1:1–15zbMATHGoogle Scholar
  21. 21.
    Fevre M, Goodwine B, Schmiedeler JP (2018) Design and experimental validation of a velocity decomposition-based controller for underactuated planar bipeds. IEEE Robot Autom Lett 3(3):1896–1903CrossRefGoogle Scholar
  22. 22.
    Chevallereau C, Grizzle JW, Shih C-L (2009) Asymptotically stable walking of a five-link underactuated 3-D bipedal robot. IEEE Trans Robot 25(1):37–50CrossRefGoogle Scholar
  23. 23.
    Tang C, Yan G, Lin Z, Wang Z, Yi Y (2015) Stable walking of 3D compass-like biped robot with underactuated ankles using discrete transverse linearization. Trans Inst Meas Control 37(9):1074–1083CrossRefGoogle Scholar
  24. 24.
    Hamed KA, Grizzle JW (2014) Event-based stabilization of periodic orbits for underactuated 3-D bipedal robots with left-right symmetry. IEEE Trans Robot 30(2):365–381CrossRefGoogle Scholar
  25. 25.
    Griffin B, Grizzle J (2017) Nonholonomic virtual constraints and gait optimization for robust walking control. Int J Robot Res 36(8):895–922CrossRefGoogle Scholar
  26. 26.
    Westervelt ER, Grizzle JW, Chevallereau C, Choi JH, Morris B (2007) Feedback control of dynamic bipedal robot locomotion. CRC Press, Boca RatonCrossRefGoogle Scholar
  27. 27.
    Isidori A (1995) Nonlinear control systems, 3rd edn. Springer, BerlinCrossRefzbMATHGoogle Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations