Advertisement

A Novel Method to Reduce of Cogging Force in a Linear Flux-Switching Permanent Magnet Brushless AC Machine

  • Gaojun MengEmail author
  • Ye Yuan
  • Yukun Sun
  • Haitao Liu
  • Zhiying Zhu
Original Article
  • 1 Downloads

Abstract

The primary linear flux-switching permanent magnet (LFSPM) motor has the merits of high speed, high response, and direct drive. However, the presence of the cogging force in LFSPM motors compromises position and speed control accuracy, which can be particularly troublesome at low speeds. A novel approach of suppressing the slot effect cogging force for LFSPM is proposed according to repetitive control of time-varying periodic signals. The time-varying periodic thrust disturbance in t-domain is transformed to the signals defined in the x-domain, and a repetitive controller is designed. Furthermore, a series of specific harmonic currents are added into q-axis reference current, resulting in additional force components to counteract the end effect cogging force. Finally, experimental evaluations of the control strategy are performed on an AD5435-controlled LFSPM drive platform. The simulations and experiments verify that the proposed method can suppress the thrust ripple effectively.

Keywords

Permanent magnet linear flux-switching permanent magnet (LFSPM) Permanent magnet (LFSPM) Cogging force Time-varying signals x-Domain repetitive controller Harmonic currents 

Notes

Acknowledgements

This paper is supported in part by grants from the National Natural Science Foundation of China (Project No. 51507077,51877101,51707082), The China Postdoctoral Science Foundation funded project (Project No. 2018M632201) and the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing Institute of Technology (Project No. XTCX201702), and talent start fund (Project No. YKJ201713).

References

  1. 1.
    Lin FJ, Shen PH, Yang SL, Chou PH (2006) Recurrent radial basis function network-based fuzzy neural network control for permanent magnet linear synchronous motor servo drive. IEEE Trans Magn 42(11):3694–3705CrossRefGoogle Scholar
  2. 2.
    Zhao W, Cheng M, Chau KT, Ji J, Cao R (2013) Remedial injected harmonic current operation of redundant flux-switching permanent magnet motor drives. IEEE Trans Industr Electron 60(1):151–159CrossRefGoogle Scholar
  3. 3.
    Xu W (2014) Novel decoupling model-based predictive current control strategy for flux-switching permanent-magnet synchronous machines with low torque ripple and switching loss. IEEE Trans Appl Supercond 24:5CrossRefGoogle Scholar
  4. 4.
    Deodhar RP, Pride A, Iwasaki S, Bremner JI (2014) Performance improvement in flux-switching PM machines using flux diverters. IEEE Trans Ind Appl 50(2):973–978CrossRefGoogle Scholar
  5. 5.
    Zhu ZQ, Chen JT (2010) Advanced flux-switching permanent magnet brushless machines. IEEE Trans Magn 46(6):1447–1453CrossRefGoogle Scholar
  6. 6.
    Zhou Shigui, Haitao Yu, Minqiang Hu (2011) Reduction of cogging force in a linear flux-switching permanent magnet brushless AC machine for direct-drive application. IEEE Trans Magn 47(10):3252–3257CrossRefGoogle Scholar
  7. 7.
    Huang Lei, Haitao Yu, Minqiang Hu et al (2011) Fault tolerant performance of a novel flux-switching permanent magnet linear machine based on harmonic current injection[. IEEE Trans Magn 47(10):3224–3227CrossRefGoogle Scholar
  8. 8.
    Liu Qiang, Haitao Yu, Minqiang Hu et al (2013) Force reduction of double-sided linear flux-switching permanent magnet machine for direct drives. IEEE Trans Magn 49(5):2275–2278CrossRefGoogle Scholar
  9. 9.
    Zhu Y, Lee S, Chung K, Cho Y (2009) Investigation of auxiliary poles design criteria on reduction of end effect of detent force for PMLSM. IEEE Trans Magn 45(6):2863–2866CrossRefGoogle Scholar
  10. 10.
    Zhu ZQ, Xia Z, Howe D, Mellor PH (1997) Reduction of cogging force in slotless linear permanent magnet motors. IEE Proc-B 144:277–282Google Scholar
  11. 11.
    Abbaszadeh K, Alam FR, Saied SA (2011) Cogging torque optimization in surface-mounted permanent-magnet motors by using design of experiment. Energy Convers Manag 52(10):3075–3082CrossRefGoogle Scholar
  12. 12.
    Zhu L, Jiang SZ, Zhu ZQ, Chan CC (2009) Analytical methods for minimizing cogging torque in permanent-magnet machines. IEEE Trans Magn 45(4):2023–2031CrossRefGoogle Scholar
  13. 13.
    Abbaszadeh K, Alam FR, Teshnehlab M (2012) Slot opening optimization of surface mounted permanent magnet motor for cogging torque reduction. Energy Convers Manag 55:108–115CrossRefGoogle Scholar
  14. 14.
    Wang Y, Jin MJ, Fei WZ, Shen JX (2010) Cogging torque reduction in permanent magnet flux-switching machines by rotor teeth axial pairing. IET Elect Power Appl 4(7):500–506CrossRefGoogle Scholar
  15. 15.
    Wang DH, Wang XH, Jung S-Y (2012) Reduction of coring torque in flux-switching permanent machine by teeth notching schemes. IEEE Trans Magn 48(11):4228–4231CrossRefGoogle Scholar
  16. 16.
    Fei W, Luk PCK, Shen J (2012) Torque analysis of permanent magnet flux switching machines with rotorstep skewing. IEEE Trans Magn 48(5):2664–2673CrossRefGoogle Scholar
  17. 17.
    Hao Li, Lin Mingyao, Da Xu, Zhang Wei (2014) Cogging torque reduction of axial field flux-switching permanent magnet machine by adding magnetic bridge in stator tooth. IEEE Trans Appl Supercond 24(3):3405–3410Google Scholar
  18. 18.
    Zhu Y, Lee S, Chung K, Cho Y (2009) Investigation of auxiliary poles design criteria on reduction of end effect of detent force for PMLSM. IEEE Trans Magn 45(6):2863–2866CrossRefGoogle Scholar
  19. 19.
    Zhu ZQ, Xia Z, Howe D, Mellor PH (1997) Reduction of cogging force in slotless linear permanent magnet motors. IEE Proc-B 144:277–282Google Scholar
  20. 20.
    Inoue M, Sato K (2000) An approach to a suitable stator length for minimizing the detent force of permanent magnet linear synchronous motors. IEEE Trans Magn 36:1890–1893CrossRefGoogle Scholar
  21. 21.
    Wang J, Inoue M, Amara Y, Howe D (2005) Cogging-force-reduction techniques for linear permanent-magnet machines. IEE Proc B 152:731–738Google Scholar
  22. 22.
    Mattavelli P, Tubiana L, Zigliotto M (2005) Torque-ripple reduction in PM synchronous motor drives using repetitive current control. IEEE Trans Power Electron 20(6):1423–1431CrossRefGoogle Scholar
  23. 23.
    Ji Hongyun, Cheng Ming, Hua Wei, Zhao Wenxiang, Li Wenlong (2010) Torque ripple suppression in flux-switching pm motor by harmonic current injection based on voltage space-vector modulation. IEEE Trans Magn 46(6):1527–1530CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  • Gaojun Meng
    • 1
    Email author
  • Ye Yuan
    • 2
  • Yukun Sun
    • 1
  • Haitao Liu
    • 1
  • Zhiying Zhu
    • 1
  1. 1.Department of Electric Power EngineeringNanjing Institute of TechnologyNanjingChina
  2. 2.Department of Electrical and Information EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations