Dual Band RCS Reduction Using Modulated Grooves in A Conducting Plane

  • Sangsu Lee
  • Heejae Jun
  • Kyung-Young Jung
  • Hosung Choo
  • Ic-Pyo Hong
  • Yong Bae ParkEmail author
Original Article


An electromagnetic boundary-value problem of modulated grooves in a conducting plane is rigorously solved based on the Fourier transform, eigenfunction expansion, and mode matching method. Radar cross section (RCS) of the modulated grooves is represented in a series form and calculated while varying depth, width, and period of the grooves to investigate scattering characteristics of dual band RCS reduction.


Radar cross section Mode matching method Modulated grooves 



This research was partly supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2017R1A2B4001903) and ICT & R&D program of MSIP/IITP [No. 2016-0-00130, Cloud based SW platform development for RF design and EM analysis] and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1A6A1A03031833).


  1. 1.
    Oliner AA, Jackson DR (2003) Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, part I: basic features. In: Proc. IEEE Antennas Propag. Soc. Int. Symp. , pp. 1091–1094Google Scholar
  2. 2.
    Jackson DR, Zhao T, Williams JT, Oliner AA (2003) Leaky surface-plasmon theory for dramatically enhanced transmission through a sub-wavelength aperture, part II: leaky-wave antenna model. In: Proc. IEEE Antennas Propag. Soc. Int. Symp, pp. 1095–1098Google Scholar
  3. 3.
    Martín-Moreno L, García-Vidal FJ, Lezec HJ, Degiron A, Ebbesen TW (2003) Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys Rev Lett 90:167401CrossRefGoogle Scholar
  4. 4.
    García-Vidal FJ, Martín-Moreno L, Lezec HJ, Ebbesen TW (2003) Focusing light with a single subwavelength aperture flanked by surface corrugations. Appl Phys Lett 83(22):4500–4502CrossRefGoogle Scholar
  5. 5.
    Degiron A, Ebbesen TW (2004) Analysis of the transmission process through single apertures surrounded by periodic corrugations. Opt Express 12(16):3694–3700CrossRefGoogle Scholar
  6. 6.
    García-Vidal FJ, Martín-Moreno L (2002) Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys Rev B 66:155412CrossRefGoogle Scholar
  7. 7.
    Na DY, Kim JH, Park YB, Jung K-Y (2013) Enhanced and directional transmission through a slit surrounded with grooves in a conducting plane. IET Microw Antennas Propag 7(10):843–850CrossRefGoogle Scholar
  8. 8.
    García-Vidal FJ, Martín-Moreno L, Pendry JB (2005) Surfaces with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt 7(2):S97CrossRefGoogle Scholar
  9. 9.
    Pendry JB, Martín-Moreno L, García-Vidal FJ (2004) Mimicking surface plasmons with structured surfaces. Science 305:847–848CrossRefGoogle Scholar
  10. 10.
    Balanis CA (2012) Advanced engineering electromagnetics, 2nd edn. Wiley & Sons Inc, New York, pp 328–333Google Scholar
  11. 11.
    Liang W et al (2012) Anomalous microwave reflection from a metal surface induced by spoof surface plasmon. Chinese Phys B 21(1):017301CrossRefGoogle Scholar
  12. 12.
    Park TJ, Eom HJ (1993) An analysis of transverse electric scattering from a rectangular channel in a conducting plane. Radio Sci 28(5):663–673CrossRefGoogle Scholar
  13. 13.
    Barkeshli K, Volakis JL (1991) Scattering from narrow rectangular filled grooves. IEEE Trans Antennas Propag 39(6):804–810CrossRefGoogle Scholar
  14. 14.
    Cho YH (2006) TM plane-wave scattering from finite rectangular grooves in a conducting plane using overlapping T-block method. IEEE Trans Antennas Propag 54(2):746–749CrossRefGoogle Scholar
  15. 15.
    Gao X et al (2012) Dual-band spoof surface plasmon polaritons based on composite-periodic gratings. J Phys D Appl Phys 45(50):505104CrossRefGoogle Scholar
  16. 16.
    Lee IG, Yoon SH, Lee JS, Hong IP (2016) Design of wideband radar absorbing material with improved optical transmittance by using printed metal-mesh. Electron Lett 52(7):555–557CrossRefGoogle Scholar
  17. 17.
    Shin H et al (2017) Analysis of radar cross section of a battleship equipped with an integrated mast module based on PO and PTD. J Electromagn Eng Sci 17(4):238–240CrossRefGoogle Scholar
  18. 18.
    Ha J et al (2017) Effect of plasma area on frequency of monostatic radar cross section reduction. J Electromagn Eng Sci 17(3):153–158CrossRefGoogle Scholar
  19. 19.
    Lee JH et al (2018) Attenuation effects of plasma on Ka-band wave propagation in various gas and pressure environments. J Electromagn Eng Sci 18(1):63–69CrossRefGoogle Scholar
  20. 20.
    Kim Y et al (2018) Numerical investigation of scattering from a surface dielectric barrier discharge actuator under atmospheric pressure. J Electromagn Eng Sci 18(1):52–57CrossRefGoogle Scholar
  21. 21.
    Harrington RF (2001) Time-harmonic electromagnetic fields, 2nd edn. Wiley, New York, pp 143–145CrossRefGoogle Scholar
  22. 22.
    López-Rios T et al (1998) Surface shape resonances in lamellar metallic gratings. Phys Rev Lett 81(3):665–668CrossRefGoogle Scholar
  23. 23.
    Beruete M et al (2004) Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plate. IEEE Antennas Wirel Propag Lett 3:328–331CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  • Sangsu Lee
    • 1
  • Heejae Jun
    • 2
  • Kyung-Young Jung
    • 3
  • Hosung Choo
    • 4
  • Ic-Pyo Hong
    • 5
  • Yong Bae Park
    • 1
    Email author
  1. 1.Department of Electrical and Computer EngineeringAjou UniversitySuwonSouth Korea
  2. 2.MOASOFT CorporationSeoulSouth Korea
  3. 3.Department of Electronic EngineeringHanyang UniversitySeoulSouth Korea
  4. 4.School of Electronic and Electrical EngineeringHongik UniversitySeoulSouth Korea
  5. 5.Department of Information and Communication EngineeringKongju National UniversityGongjuSouth Korea

Personalised recommendations