Advertisement

Fault Diagnosis Method for Switched Reluctance Machine Drive Systems Using a Switching Signal

  • Hye Ung Shin
  • Kyo-Beum LeeEmail author
Original Article
  • 2 Downloads

Abstract

This paper presents a fault diagnosis method for switched reluctance machine (SRM) drive systems using a switching signal. This method can detect to the power transistor of power converter which has an open and short circuit. In addition, the information of the short fault switch can be recognized by using signals of the real switch and digital signal processor (DSP). The signals of DSP have some fault patterns, which are analyzed in the power converter, under the fault occurrence situation. The validity of the proposed method is verified by the simulation and experiment using the SRM drive system.

Keywords

Switched reluctance machine Diagnosis method Open fault Short fault Power transistor Asymmetric bridge converter 

Notes

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20171210201100) and “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20174030201660).

References

  1. 1.
    Belfore LA, Arkadan A (2002) A methodology for characterizing fault tolerant switched reluctance motors using neurogenetically derived models. IEEE Trans Energy Convers 17(3):380–384CrossRefGoogle Scholar
  2. 2.
    Mir S, Islam MS, Sebastian T, Husain I (2004) Fault-tolerant switched reluctance motor drive using adaptive fuzzy logic controller. IEEE Trans Power Electron 19(2):289–295CrossRefGoogle Scholar
  3. 3.
    Hennen MD, Niessen M, Heyers C, Brauer HJ, Doncker RWD (2012) Development and control of an integrated and distributed inverter for a fault tolerant five-phase switched reluctance traction drive. IEEE Trans Power Electron 27(2):547–552CrossRefGoogle Scholar
  4. 4.
    Kim JH, Ha KS, Krishnana R (2012) Single-controllable-switch-based switched reluctance motor drive for low cost, variable-speed applications. IEEE Trans Power Electron 27(1):379–387CrossRefGoogle Scholar
  5. 5.
    Jidin AB, Idris NRBN, Yatim AHBM, Elbuluk ME, Sutikno T (2012) A wide-speed high torque capability utilizing over modulation strategy in DTC of induction machines with constant switching frequency controller. IEEE Trans Power Electron 27(5):2566–2574CrossRefGoogle Scholar
  6. 6.
    Cameron DE, Lang JH (1993) The control of high-speed variable-reluctance generators in electric power systems. IEEE Trans Ind Appl 29(6):1106–1109CrossRefGoogle Scholar
  7. 7.
    Krishnamurthy M, Edrington CS, Emadi A, Asadi P, Ehsani M, Fahimi B (2006) Making the case for applications of switched reluctance motor technology in automotive products. IEEE Trans Power Electron 21(3):659–674CrossRefGoogle Scholar
  8. 8.
    Besbes M, Gasbi M, Hoang E, Lecrivian M, Grioni B, Plasse C (2000) SRM design for starter-alternator system. In: Proc. electric machines int. conf., pp 1931–1935Google Scholar
  9. 9.
    Ro HS, Lee KG, Lee JS, Jeong HG, Lee KB (2015) Torque ripple minimization scheme using torque sharing function based fuzzy logic control for a switched reluctance motor. J Electr Eng Technol 10(1):118–127CrossRefGoogle Scholar
  10. 10.
    Lee D-H, Linag J, Lee Z-G, Ahn J-W (2009) A simple nonlinear logical torque sharing function for low-torque ripple SR drive. IEEE Trans Ind Electron 56(8):3021–3028CrossRefGoogle Scholar
  11. 11.
    Islam MS, Husain I (2000) Torque-ripple minimization with indirect position and speed sensing for switched reluctance motors. IEEE Trans Ind Electron 47(5):1126–1133CrossRefGoogle Scholar
  12. 12.
    He J, Demerdash N (2014) Diagnosis of open-circuit switch faults in multilevel active-NPC (ANPC) inverters. In: Proc. ITEC conf., pp 1–6Google Scholar
  13. 13.
    Lequesne B, Gopalakrishnan S, Omekanda AM (2005) Winding short circuits in the switched reluctance drive. IEEE Trans Ind Appl 41(5):1178–1184CrossRefGoogle Scholar
  14. 14.
    Gameiro NS, Cardoso AJM (2008) Fault tolerant power converter for switched reluctance drives. In: Proc. electron. mach. int. conf., pp 1–6Google Scholar
  15. 15.
    Hennen MD, Niessen M, Heyers C, Brauer HJ, De Doncker RW (2012) Development and control of an integrated and distributed inverter for fault tolerant five-phase switched reluctance traction drive. IEEE Trans Power Electron 27(2):547–554CrossRefGoogle Scholar
  16. 16.
    Arkadan AA, Kielgas BW (1994) Switched reluctance motor drive systems dynamic performance prediction under internal and external fault conditions. IEEE Trans Energy Convers 9(1):45–52CrossRefGoogle Scholar
  17. 17.
    Gameiro NS, Cardoso AJM (2010) Power converter fault diagnosis in SRM drives based on DC-bus current analysis. In: Proc. ICEM conf., pp 1–6Google Scholar
  18. 18.
    Chen H, Lu S (2013) Fault diagnosis digital method for power transistors in power converters of switched reluctance motors. IEEE Trans Ind Electron 60(2):749–763CrossRefGoogle Scholar
  19. 19.
    Shin HU, Lee KB (2016) Fault diagnosis method for power transistors in switched reluctance machine drive system. In: Proc. IPEMC ECCE Asia conf., pp 2481–2486Google Scholar
  20. 20.
    Torkaman H, Afjei E, Yadegari P (2012) Static, dynamic, and mixed eccentricity faults diagnosis in switched reluctance motors using transient finite element method and experiments. IEEE Trans Magn 48(8):2254–2264CrossRefGoogle Scholar
  21. 21.
    Gameiro NS, Cardoso AJM (2012) A new method for power converter fault diagnosis in SRM drives. IEEE Trans Ind Appl 48(2):653–662CrossRefGoogle Scholar
  22. 22.
    Hao C, Shengli L (2013) Fault diagnosis digital method for power transistors in power converters of switched reluctance motors. IEEE Trans Ind Electron 60(2):749–763CrossRefGoogle Scholar
  23. 23.
    Marques JF, Estima JO, Gameiro NS, Cardoso AM (2014) A new diagnostic technique for real-time diagnosis of power converter faults in switched reluctance motor drives. IEEE Trans Ind Appl 50(3):1854–1860CrossRefGoogle Scholar
  24. 24.
    Arkadan AA, Du P, Sidani M, Bouji M (2000) Performance prediction of SRM drive systems under normal and fault operating conditions using GA-based ANN method. IEEE Trans Magn 36(4):1945–1949CrossRefGoogle Scholar
  25. 25.
    Bouji M, Arkadan AA, Ericsen T (2001) Fuzzy inference system for the characterization of srm drives under normal and fault conditions. IEEE Trans Magn 37(5):3745–3748CrossRefGoogle Scholar
  26. 26.
    Gameiro NS, Cardoso AJM (2008) Fault tolerant control strategy of SRM drives. In: Proc. IEEE int. symp. power electron. electr. drives, autom. motion, pp 301–306Google Scholar
  27. 27.
    Stephens CM (1991) Fault detection and management system for fault-tolerant switched reluctance motor drives. IEEE Trans Ind Appl 27(6):1098–1102CrossRefGoogle Scholar
  28. 28.
    Torkaman H, Afjei E (2013) Comprehensive detection of eccentricity fault in switched reluctance machines using high-frequency pulse injection. IEEE Trans Power Electron 28(3):1382–1390CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringAjou UniversitySuwonKorea
  2. 2.Department of Electric Powertrain R&D, Ssangyong MotorPyeongtaekKorea

Personalised recommendations