Advertisement

Impact of Observability and Multi-objective Optimization on the Performance of Extended Kalman Filter for DTC of AC Machines

  • Ibrahim Mohd Alsofyani
  • Nik Rumzi Nik Idris
  • Kyo-Beum LeeEmail author
Original Article
  • 5 Downloads

Abstract

It is well known that the selection of extended Kalman filter (EKF) covariance elements has a considerable bearing on the effectiveness of EKF performance. The observability at very low frequency is also an essential property for the selection of EKF elements. This paper investigates the optimization of the EKF covariance elements when zero frequency is included in the training profile for direct torque control (DTC) of induction motor. In addition, the paper studies the optimization of EKF by speed and torque fitness functions using a non-dominated sorting genetic algorithm-II at zero and high speeds under stable flux regulation. For this purpose, DTC with constant switching frequency controller which has the capability of establishing continuous flux rotation regardless of speed variation is used. The optimized results of EKF for both DTC motor drives and speed and torque cost functions are verified experimentally.

Keywords

DTC Extended Kalman filter Instructions Induction motor Multi-objective optimization NSGA II 

List of Symbols

A

System matrix

B

Input matrix

DTC

Direct torque control

EKF

Extended Kalman filter

FOC

Field oriented control

IM

Induction motor

is

Stator current space vector

KF

Kalman filter

ls, lr

Stator and rotor self inductances

Rs, Rr

Stator and rotor resistances

u

Control-input vector

vs

Stator voltage space vectors

x

State space vector

σ

\(\sigma = 1 - L_{m}^{2} /(L_{s} L_{r} )\)

\(\omega _{r}\)

Rotor speed

\(l_{\sigma }\)

\(l_{\sigma } = l_{s} - l_{m}^{2} /l_{r}\)

\(\psi_{s} , \psi_{r}\)

Stator and rotor flux linkage space vectors

Notes

Acknowledgements

This research was supported by a Grant (no. 20172020108970) from the Korea Institute of Energy Technology Evaluation and Planning (KETEP) that was funded by the Ministry of Trade, Industry and Energy (MOTIE).

References

  1. 1.
    Holtz J (2006) Sensorless control of induction machines;with or without signal injection? IEEE Trans Ind Electron 53:7–30CrossRefGoogle Scholar
  2. 2.
    Lee KB, Song JH, Choy I, Yoo JY (2001) Improvement of low-speed operation performances of DTC for 3-level inverter-fed induction motors. IEEE Trans Ind Electron 48(5):1006–1014Google Scholar
  3. 3.
    Finch JW, Giaouris D (2008) Controlled AC electrical drives. IEEE Trans Ind Electron 55:481–491CrossRefGoogle Scholar
  4. 4.
    Alsofyani IM, Idris NRN (2013) A review on sensorless techniques for sustainable reliablity and efficient variable frequency drives of induction motors. J Renew Sustain Energy Rev 24:111–121CrossRefGoogle Scholar
  5. 5.
    Han DY, Cho Y, Lee KB (2017) Simple sensorless control of interior permanent magnet synchronous motor using PLL based on extended EMF. J Electr Eng Technol 12(2):711–717CrossRefGoogle Scholar
  6. 6.
    Marčetić DP, Krčmar IR, Gecić MA, Matić PR (2014) Discrete rotor flux and speed estimators for high-speed shaft-sensorless IM drives. IEEE Trans Ind Electron 61:3099–3108CrossRefGoogle Scholar
  7. 7.
    Kuntanapreeda S (2015) Super-twisting sliding-mode traction control of vehicles with tractive force observer. Control Eng Pract 38:26–36CrossRefGoogle Scholar
  8. 8.
    Abdeddaim S et al (2014) Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine. Energy Convers Manage 79:281–288CrossRefGoogle Scholar
  9. 9.
    Madadi Kojabadi H et al (2013) Robust stator resistance identification of an IM drive using model reference adaptive system. Energy Convers Manag 65:507–517CrossRefGoogle Scholar
  10. 10.
    Gadoue SM et al (2010) MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy-logic adaptation mechanisms. IEEE Trans Energy Convers 25:394–402CrossRefGoogle Scholar
  11. 11.
    Lee KB, Bae CH, Blaabjerg F (2006) An improved DTC-SVM method for matrix converter drives using a deadbeat scheme. Int J Electron 93(11):737–753CrossRefGoogle Scholar
  12. 12.
    Lee KG, Lee JS, Lee KB (2015) Wide-range sensorless control for SPMSM using an improved full-order flux observer. J Power Electron 15(3):721–729CrossRefGoogle Scholar
  13. 13.
    Zerdali E, Barut M (2017) The comparisons of optimized extended Kalman filters for speed-sensorless control of induction motors. IEEE Trans Ind Electron 64(6):4340–4351CrossRefGoogle Scholar
  14. 14.
    Sim H-W, Lee J-S, Lee K-B (2014) On-line parameter estimation of interior permanent magnet synchronous motor using an extended Kalman filter. J Electr Eng Technol 9:600–608CrossRefGoogle Scholar
  15. 15.
    Barut M (2010) Bi Input-extended Kalman filter based estimation technique for speed-sensorless control of induction motors. Energy Convers Manage 51:2032–2040CrossRefGoogle Scholar
  16. 16.
    Jafarzadeh S et al (2011) Square root unscented Kalman filters for state estimation of induction motor drives. In: Proc. IEEE ECCE, 2011, pp 75–82Google Scholar
  17. 17.
    Jafarzadeh S et al (2012) State estimation of induction motor drives using the unscented Kalman filter. IEEE Trans Ind Electron 59:4207–4216CrossRefGoogle Scholar
  18. 18.
    Alonge F et al (2014) Sensorless control of induction-motor drive based on robust Kalman filter and adaptive speed estimation. IEEE Trans Ind Electron 61:1444–1453CrossRefGoogle Scholar
  19. 19.
    Yin ZG, Zhao C, Zhong YR, Liu J (2014) Research on robust performance of speed-sensorless vector control for the induction motor using an interfacing multiple-model extended Kalman filter. IEEE Trans Power Electron 29(6):3011–3019CrossRefGoogle Scholar
  20. 20.
    Barut M et al (2007) Speed-sensorless estimation for induction motors using extended Kalman filters. IEEE Trans Ind Electron 54:272–280CrossRefGoogle Scholar
  21. 21.
    Shi KL et al (2002) Speed estimation of an induction motor drive using an optimized extended Kalman filter. Ind Electron IEEE Trans 49:124–133CrossRefGoogle Scholar
  22. 22.
    Alsofyani IM et al (2012) An optimized extended Kalman Filter for speed sensorless direct troque control of an induction motor. In: Proc IEEE PECON Conf., pp 319–324Google Scholar
  23. 23.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comp 6:182–197CrossRefGoogle Scholar
  24. 24.
    Takahashi I, Noguchi T (1986) A new quick-response and high-efficiency control strategy of an induction motor. IEEE Trans Ind App 22:820–827CrossRefGoogle Scholar
  25. 25.
    Idris NRN, Yatim AHM (2004) Direct torque control of induction machines with constant switching frequency and reduced torque ripple. IEEE Trans Ind Electron 51:758–767CrossRefGoogle Scholar
  26. 26.
    Alsofyani IM et al (2014) Improved EKF-based direct torque control at the start-up using constant switching frequency. In: Proc. IEEE CENCON Conf., pp 237–242Google Scholar
  27. 27.
    Buyamin S, Finch JW (2007) Comparative study on optimising the EKF for speed estimation of an induction motor using simulated annealing and genetic algorithm. In: Proc. IEEE IEMDC Conf., pp 1689–1694Google Scholar
  28. 28.
    Zhengyun R et al (2006) Application of optimized EKF in direct torque control system of induction motor. In: Proc. ICICIC Conf., pp 331–335Google Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  • Ibrahim Mohd Alsofyani
    • 1
  • Nik Rumzi Nik Idris
    • 2
  • Kyo-Beum Lee
    • 1
    Email author
  1. 1.Department of Electrical and Computer EngineeringAjou UniversitySuwonKorea
  2. 2.Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations