Advertisement

Development of microporous-activated carbons derived from two renewable precursors for CO2 capture

  • E. Gomez-Delgado
  • G. V. Nunell
  • A. L. Cukierman
  • P. R. BonelliEmail author
Original Article
  • 5 Downloads

Abstract

Wood sawdust from an invasive arboreal species, Parkinsonia aculeata, and seeds from a tropical fruit of massive consumption, Pouteria sapota, were used as precursors for the development of activated carbons (ACs) directed to CO2 adsorption. Chemical activation employing KOH as activating agent and pre-established experimental conditions was applied. Main physicochemical properties of the ACs in relation to their CO2 adsorption performance were examined. The ACs developed from the wood sawdust and the seeds presented specific surfaces areas of 770 and 1000 m2 g−1, respectively, with their porosity development resulting essentially microporous (< 2 nm). They also showed a similar content of acidic surface groups, but basic functionalities of the former duplicated those of the latter. Maximum CO2 adsorbed at equilibrium (273 K and 100 kPa) was 5.0 mmol g−1 and 4.4 mmol g−1 for the samples derived from the sawdust and the seeds, respectively. On the other hand, CO2 adsorption capacities mimicking post-combustion conditions, as evaluated from thermogravimetric assays and breakthrough curves obtained in a packed-bed column, were approximately 1 mmol g−1, indicating a good CO2 adsorption performance for both ACs. Nevertheless, those derived from the wood sawdust with a notorious preeminence of micropores (~ 93%), narrower pore size distribution centered around 1 nm, and a higher content of basic functionalities than the ACs obtained from the seeds showed a relatively better performance. The CO2 removal capacity of the activated carbons was not noticeably affected after five CO2 adsorption–desorption cycles, with both samples almost keeping their initial CO2 adsorption capacity.

Keywords

Biomass Activated carbon CO2 adsorption KOH activation Regeneration 

Notes

Acknowledgements

Authors gratefully acknowledge Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) (Grant no. PICT 2015-2109, 2016-4658, 2017-1804), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Universidad de Buenos Aires (UBA) from Argentina, for financial support.

Compliance with ethical standards

Conflict of interest

As corresponding author, on behalf of all coauthors, I declare that we have no conflict of interest.

Human participants and/or animals rights

Our research does not involve human participants and/or animals.

References

  1. 1.
    ICPP (2014) Climate change: mitigation of climate change, working group III contribution to the IPCC 5th assessment report, ICPP, http://www.ipcc.ch/. Accessed 12 June 2018
  2. 2.
    Serafin J, Narkiewicz U, Morawski A, Wróbel R, Michalkiewicz B (2017) Highly Microporous Activated carbons from biomass for CO2 capture and effective micropores at different conditions. J CO2 Util 18:73–79CrossRefGoogle Scholar
  3. 3.
    Tiwari D, Goel C, Bhunia H, Bajpai P (2017) Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture. J Environ Manage 197:415–427CrossRefGoogle Scholar
  4. 4.
    Plaza M, Pevida C, Arias C, Fermoso J, Arenillas A, Rubiera F, Pis J (2008) Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture. J Therm Anal Calorim 92:601–606CrossRefGoogle Scholar
  5. 5.
    Cozma P, Ghinea C, Mamaliga I, Wukovits W, Friedl A, Gavrilescu M (2013) Environmental impact assessment of high pressure water scrubbing biogas upgrading technology. Clean Soil Air Water 41:917–927CrossRefGoogle Scholar
  6. 6.
    Zhang L, Yin Y, Li L, Wang F, Song Q, Zhao N, Xiao F, Wei W (2016) Numerical simulation of CO2 adsorption on K based sorbent. Energ Fuel 30:4283–4291CrossRefGoogle Scholar
  7. 7.
    Hori K, Higuchi T, Aoki Y, Miyamoto M, Oumi Y, Yogo K, Uemiya S (2017) Effect of pore size, aminosilane density and aminosilane molecular length on CO2 adsorption performance in aminosilane modified mesoporous Silica. Micropor Mesopor Mat 246:158–165CrossRefGoogle Scholar
  8. 8.
    Nwaoha C, Supap T, Idem R, Saiwan C, Tontiwachwuthikul P, AL-Marri M, Benamor A (2017) Advancement and new perspectives of using formulated reactive amine blends for post-combustion carbon dioxide (CO2) capture technologies. Petroleum 3:10–36CrossRefGoogle Scholar
  9. 9.
    Zhu X, Wang P, Peng C, Yang J, Yan X (2014) Activated carbon produced from paulownia sawdust for high-Performance CO2 sorbents. Chin Chem Lett 25:929–932CrossRefGoogle Scholar
  10. 10.
    Ammendola P, Raganati F, Chirone R (2017) CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: thermodynamics and kinetics. Chem Eng J 322:302–313CrossRefGoogle Scholar
  11. 11.
    Seo SW, Choi YJ, Kim JH et al (2019) Micropore-structured activated carbon prepared by waste PET/petroleum-based pitch. Carbon Lett.  https://doi.org/10.1007/s42823-019-00028-w Google Scholar
  12. 12.
    Shen C, Yu J, Li P, Grande C, Rodrigues A (2011) Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads. Adsorption 17:179–188CrossRefGoogle Scholar
  13. 13.
    Dong X, Li Y, Li S, Wang Y, Zhu J (2017) Insight into the CO2 capturer derived from graphene/MgO composite. Clean Soil Air Water 45(9999):1600755CrossRefGoogle Scholar
  14. 14.
    Moura P, Vilarrasa-Garcia E, Maia D, Bastos-Neto M, Ania C, Parra J, Azevedo D (2018) Assessing the potential of nanoporous carbon adsorbents from polyethylene terephthalate (PET) to separate CO2 from flue gas. Adsortion 24:279–291CrossRefGoogle Scholar
  15. 15.
    Vargas D, Giraldo L, Silvestre-Albero J, Moreno-Piraján J (2011) CO2 adsorption on binderless activated carbon monoliths. Adsorption 17:497–504CrossRefGoogle Scholar
  16. 16.
    Deng S, Wei H, Chen T, Wang B, Huang J, Yu G (2014) Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem Eng J 253:46–54CrossRefGoogle Scholar
  17. 17.
    Banisheykholeslami F, Ghoreyshi A, Mohammadi M, Pirzadeh K (2015) Synthesis of a carbon molecular sieve from broom corn stalk via carbon deposition of methane for the selective separation of a CO2/CH4 Mixture. Clean – Soil. Air, Water 43:1084–1092CrossRefGoogle Scholar
  18. 18.
    Song T, Liao J, Xiao J, Shen L (2015) Effect of micropore and mesopore structure on CO2 adsorption by activated carbons from biomass. New Carbon Mater 30:156–166CrossRefGoogle Scholar
  19. 19.
    Nunell G, Fernández M, Bonelli P, Cukierman A (2016) Development and characterization of microwave-assisted activated carbons from Parkinsonia aculeata wood. Adsorption 22:347–356CrossRefGoogle Scholar
  20. 20.
    Al-Janabi N, Vakili R, Kalumpasut P, Gorgojo P, Siperstein FR, Fan X, McCloskey P (2018) Velocity variation effect in fixed bed columns: a case study of CO2 capture using porous solid adsorbents. AIChE J 64:2189–2197CrossRefGoogle Scholar
  21. 21.
    Nunell G, Fernández M, Bonelli P, Cukierman A (2012) Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater. Biomass Bioenergy 44:87–95CrossRefGoogle Scholar
  22. 22.
    Deng H, Li G, Yang H, Tang J, Tang J (2010) Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem Eng J 163:373–381CrossRefGoogle Scholar
  23. 23.
    Ramos M, Bonelli P, Blacher S, Ribeiro Carrott M, Carrott P, Cukierman A (2011) Effect of the activating agent on physico-chemical and electrical properties of activated carbon cloths developed from a novel cellulosic precursor. Colloid Surface A 378:87–93CrossRefGoogle Scholar
  24. 24.
    Basso M, Cerrella E, Cukierman A (2002) Activated carbons developed from a rapidly renewable biosource for removal of cadmium (II) and nickel (II) ions from dilute aqueous solutions. Ind Eng Chem Res 41:180–189CrossRefGoogle Scholar
  25. 25.
    Kacem M, Pellerano M, Delebarre A (2015) Pressure swing adsorption for CO2/N2 and CO2/CH4 separation: comparison between activated carbons and zeolites performances. Fuel Process Technol 138:271–283CrossRefGoogle Scholar
  26. 26.
    Nunell G, Fernández M, Bonelli P, Cukierman A (2015) Nitrate uptake from water by means of tailored adsorbents. Water Air Soil Poll 226:278CrossRefGoogle Scholar
  27. 27.
    Shafeeyan M, Daud W, Houshmand A, Shamiri A (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. J Anal Appl Pyrol 89:143–151CrossRefGoogle Scholar
  28. 28.
    Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing K (2014) Adsorption by powders and porous solids principles, methodology and applications, 2nd edn. Elsevier Ltd., AmsterdamGoogle Scholar
  29. 29.
    Jagiello J, Thommes M (2004) Comparison of DFT characterization methods based On N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42:1227–1232CrossRefGoogle Scholar
  30. 30.
    González A, Plaza M, Rubiera F, Pevida C (2013) Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chem Eng J 230:456–465CrossRefGoogle Scholar
  31. 31.
    Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4:5800–5806CrossRefGoogle Scholar
  32. 32.
    Plaza MG, González AS, Pevida C, Pis JJ, Rubiera F (2012) Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl Energy 99:272–279CrossRefGoogle Scholar
  33. 33.
    Ello AS, de Souza LKC, Trokourey A, Jaroniec M (2013) Coconut shell-based microporous carbons for CO2 capture. Micropor Mesopor Mat 180:280–283CrossRefGoogle Scholar
  34. 34.
    Travis W, Gadipelli S, Guo Z (2015) Superior CO2 adsorption from waste coffee ground derived carbons. RSC Adv 5:29558–29562CrossRefGoogle Scholar
  35. 35.
    Wang J, Heerwig A, Lohe MR, Oschatz M, Borchardt L, Kaskel S (2012) Fungi-based porous carbons for CO2 adsorption and separation. J Mater Chem 22:13911–13913CrossRefGoogle Scholar
  36. 36.
    Parshetti GK, Chowdhury S, Balasubramanian R (2015) Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel 148:246–254CrossRefGoogle Scholar
  37. 37.
    Vargas DP, Giraldo L, Erto A, Moreno-Piraján JC (2013) Chemical modification of activated carbon monoliths for CO2 adsorption. J Therm Anal Calorim 114:1039–1047CrossRefGoogle Scholar
  38. 38.
    Deng S, Hu B, Chen T, Wang B, Huang J, Wang Y et al (2015) Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption 21:125–133CrossRefGoogle Scholar
  39. 39.
    Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4:1765–1771CrossRefGoogle Scholar
  40. 40.
    Matabosch Coromina H, Walsh DA, Mokaya R (2016) Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications. J Mater Chem A 4:280–289CrossRefGoogle Scholar
  41. 41.
    Landaverde-Alvarado C, Morris A, Martin S (2017) Gas sorption and kinetics of CO2 sorption and transport in a polymorphic microporous MOF with open Zn (II) coordination sites. J CO2 Util 19:40–48CrossRefGoogle Scholar
  42. 42.
    Loganathan S, Tikmani M, Edubilli S, Mishra A, Ghoshal AK (2014) CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature. Chem Eng J 256:1–8CrossRefGoogle Scholar
  43. 43.
    Borna M, Pirsaheb M, Niri M, Mashizie R, Kakavandi B, Zare M, Asadi A (2016) Batch and column studies for the adsorption of chromium (VI) on low-cost Hibiscus cannabinus kenaf, a green adsorbent. J Taiwan Inst Chem E 68:80–89CrossRefGoogle Scholar
  44. 44.
    Cui X, Bustin R, Dipple G (2004) Selective transport of CO2, CH4, and N2 in Coal: insights from modeling of experimental gas adsorption data. Fuel 83:293–303CrossRefGoogle Scholar

Copyright information

© Korean Carbon Society 2019

Authors and Affiliations

  1. 1.Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Pabellón de IndustriasInstituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Tecnología Farmacéutica, Facultad de Farmacia y BioquímicaCátedra de Tecnología Farmacéutica II, Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations