Carbon Letters

, Volume 29, Issue 1, pp 69–79 | Cite as

Facile synthesis and electrochemical investigations of Tin-doped MnO2/carbon nanotube composites

  • Indu Kaushal
  • Ashok K. SharmaEmail author
  • Priya Saharan
  • Vinit Kumar
  • Surender Duhan
Original Article


The composites of carbon nanotube (CNT) supported by Sn-doped MnO2 with enhanced capacitance have been fabricated with varying dopant concentrations. The composites have been subjected to physiochemical, configurational, and morphological analyses by FTIR, UV–Vis spectroscopy, X-ray diffraction and field emission scanning electron microscopy, high resolution transmission electron microscopy and selected area electron diffraction studies. The electrochemical performance of the composite has been evaluated by cyclic voltammetry and charge/discharge techniques. Highest specific capacitances of 940 F g−1 at a current density of 0.35 A g−1 and 927 F g−1 at 5 mV s−1 in 1 M Na2SO4 electrolyte solution was achieved in the case of 5% Sn doped composite. Moreover, the electrode demonstrated good cycling performance and retaining 79.7% of the initial capacitance over 3000 cycles. The superior electrochemical performance is accredited mainly to the porous sheath hierarchical architecture, which consist of inter connected MnO2 nanoneedles uniformly coated over the CNT surface. This peculiar architecture is responsible for fast ion/electron transfer and easy access of the active material.


Carbon nanotubes Manganese oxide Composite Specific capacitance Co-precipitation 



Authors are thankful to the university grant commission (UGC), Government of India for providing financial assistance in the form of major research project (F. No. 42-345/2013).


  1. 1.
    Hashem AM, Abuzeid HM, Narayanan N, Ehrenberg H, Julien C (2011) Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2. Mater Chem Phys 33:130Google Scholar
  2. 2.
    Ananth MV, Pethkar S, Dakshinamurthi K (1998) Distortion of MnO6 octahedra and electrochemical activity of Nstutite-based MnO2 polymorphs for alkaline electrolytes—an FTIR study. J Power Sources 75:278CrossRefGoogle Scholar
  3. 3.
    Ni J, Lu W, Zhang L, Yue B, Shang X, Lv Y (2008) Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudo capacitance properties. J Phys Chem C 113:54CrossRefGoogle Scholar
  4. 4.
    Yao W, Zhou H, Lu Y (2013) Synthesis and property of novel MnO2@ polypyrrole coaxial nanotubes as electrode material for supercapacitors. J Power Sources 241:359CrossRefGoogle Scholar
  5. 5.
    Choi D, Kim K (2016) Comparative study on various sponges as substrates for reduced graphene oxide-based supercapacitor. Carbon Lett 18:71CrossRefGoogle Scholar
  6. 6.
    Choi Y, Cho S, Lee Y-S (2014) Effect of the addition of carbon black and carbon nanotube to FeS2 cathode on the electrochemical performance of thermal battery. J Ind Eng Chem 20:3584CrossRefGoogle Scholar
  7. 7.
    Wanga N, Shenga GQ, Lina LP, Magdassib S, Longa Y (2017) One-step hydrothermal synthesis of Rare Earth/W-codoped VO2 nanoparticles: reduced phase transition temperature and improved thermochromic properties. J Alloy Compd 711:222CrossRefGoogle Scholar
  8. 8.
    Gobal F, Jafarzadeh S (2013) Improved pseudo-capacitive performance of nano-porous manganese oxide on an electrochemically derived nickel framework. Anal Lett 46:2372CrossRefGoogle Scholar
  9. 9.
    Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sources 258:290CrossRefGoogle Scholar
  10. 10.
    Kim J, Ghouri ZK, Khan RZ, An T, Park M, Kim H-Y (2015) Experimental study on synthesis of Co/CeO2-doped carbon nanofibers and its performance in supercapacitors. Carbon Lett 16:270CrossRefGoogle Scholar
  11. 11.
    Lee DW, Yoo BR (2014) Advanced metal oxide (supported) catalysts: synthesis and applications. J Ind Eng Chem 20:3947CrossRefGoogle Scholar
  12. 12.
    Sahu V, Grover S, Tulachan B, Sharma M, Srivastava G, Roy M et al (2015) Heavily nitrogen doped, graphene supercapacitor from silk cocoon. Electrochim Acta 160:244CrossRefGoogle Scholar
  13. 13.
    Kim J-H, Jung M-J, Kim M-J, Lee Y-S (2017) Electrochemical performances of lithium and sodium ion batteries based on carbon materials. J Ind Eng Chem 61:368–380CrossRefGoogle Scholar
  14. 14.
    Suib SL (2008) Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc Chem Res 41:479CrossRefGoogle Scholar
  15. 15.
    Zhu H, Luo J, Yang H, Liang J, Rao G, Li J et al (2008) Birnessite-type MnO2 nanowalls and their magnetic properties. J Phys Chem C 112:17089CrossRefGoogle Scholar
  16. 16.
    Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727CrossRefGoogle Scholar
  17. 17.
    De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535CrossRefGoogle Scholar
  18. 18.
    Han ZJ, Seo DH, Yick S, Chen JH, Ostrikov KK (2014) MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes. NPG Asia Mater 6:e140CrossRefGoogle Scholar
  19. 19.
    Zhu Z, Tang S, Yuan J, Qin X, Deng Y, Qu R, Haarberg GM (2016) Effects of various binders on supercapacitor performances. Int J Electrochem Sci 11:8270CrossRefGoogle Scholar
  20. 20.
    Sharma RK, Oh H-S, Shul Y-G, Kim H (2007) Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor. J Power Sources 173:1024CrossRefGoogle Scholar
  21. 21.
    Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917CrossRefGoogle Scholar
  22. 22.
    Li H, Zhu G, Yang Z, Wang Z, Liu Z-H (2010) Preparation and capacitance property of MnO2-pillared Ni2+–Fe3+ layered double hydroxides nanocomposite. J Colloid Interface Sci 345:228CrossRefGoogle Scholar
  23. 23.
    Saha S, Chhetri S, Khanra P, Samanta P, Koo H, Murmu NC et al (2016) In-situ hydrothermal synthesis of MnO2/NiO@Ni hetero structure electrode for hydrogen evolution reaction and high energy asymmetric supercapacitor applications. J Energy Storage 6:22CrossRefGoogle Scholar
  24. 24.
    Zhaoa Y, Ran W, Xiong D-B, Zhang L, Xu J, Gao F (2014) Synthesis of Sn-doped Mn3O4/C nanocomposites as supercapacitor electrodes with remarkable capacity retention. Mater Lett 118:80CrossRefGoogle Scholar
  25. 25.
    Hibino M, Kawaoka H, Zhou H, Honma I (2004) Rapid discharge performance of composite electrode of hydrated sodium manganese oxide and acetylene black. Electrochim Acta 49:5209CrossRefGoogle Scholar
  26. 26.
    Wu M, Snook GA, Chen GZ, Fray DJ (2004) Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem Commun 6:499CrossRefGoogle Scholar
  27. 27.
    Crepaldi EL, Pavan PC, Valim JB (2000) Comparative study of the coprecipitation methods for the preparation of layered double hydroxides. J Braz Chem Soc 11:64CrossRefGoogle Scholar
  28. 28.
    Khan M, Tahir MN, Adil SF, Khan HU, Siddiqui MRH, Al-warthan AA et al (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3:18753CrossRefGoogle Scholar
  29. 29.
    Sultana S, Kishore D, Kuniyil M, Khan M, Siddiqui MRH, Alwarthan A et al (2017) Promoting effects of thoria on the nickel–manganese mixed oxide catalysts for the aerobic oxidation of benzyl alcohol. Arab J Chem 10:448–457CrossRefGoogle Scholar
  30. 30.
    Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson TJ, Ondu CKK, Holt CMB, Olsen BC, Tak JK (2013) Interconnected carbon nanosheets derived from hemp for ultra fast super capacitors with high energy. ACS Nano 7:5131CrossRefGoogle Scholar
  31. 31.
    Channu VSR, Holze R, Wicker SA Sr, Walker EH Jr, Williams QL, Kalluru RR (2011) Synthesis and characterization of (Ru–Sn) O2 nanoparticles for supercapacitors. Mater Sci Appl 2:1175Google Scholar
  32. 32.
    Yang R, Wang Z, Dai L, Chen L (2005) Synthesis and characterization of single-crystalline nanorods of α-MnO2 and γ-MnOOH. Mater Chem Phys 93:149CrossRefGoogle Scholar
  33. 33.
    Grover S, Shekhar S, Sharma RK, Singh G (2014) Multiwalled carbon nanotube supported polypyrrole manganese oxide composite supercapacitor electrode: role of manganese oxide dispersion in performance evolution. Electrochim Acta 116:137CrossRefGoogle Scholar
  34. 34.
    Hassan S, Suzuki M, Abd E-MA (2014) Facile synthesis of MnO2/graphene electrode by two-steps electrodeposition for energy storage application. Int J Electrochem Sci 9:8340Google Scholar
  35. 35.
    Dubal D, Lokhande C (2013) Significant improvement in the electrochemical performances of nano-nest like amorphous MnO2 electrodes due to Fe doping. Ceram Int 39:415CrossRefGoogle Scholar
  36. 36.
    Lamaita L, Peluso MA, Sambeth JE, Thomas HJ (2005) Synthesis and characterization of manganese oxides employed in VOCs abatement. Appl Catal B 61:114CrossRefGoogle Scholar
  37. 37.
    Baldi M, Milella F, Gallardo-Amores JM (1998) A study of Mn–Ti oxide powders and their behaviour in propane oxidation catalysis. J Mater Chem 8:2525CrossRefGoogle Scholar
  38. 38.
    Salem JK, Hammad TM, Harrison RR (2013) Synthesis, structural and optical properties of Ni-doped ZnO micro-spheres. J Mater Sci: Mater Electron 24:1670Google Scholar
  39. 39.
    Subramanian N, Viswanathan B, Varadarajan TK (2014) A facile, morphology-controlled synthesis of potassium-containing manganese oxide nanostructures for electrochemical supercapacitor application. RSC Adv 4:33911CrossRefGoogle Scholar
  40. 40.
    Hashem AM, Abdel-Latif AM, Abuzeid HM, Abbas HM, Ehrenberg H, Farag RS et al (2011) Improvement of the electrochemical performance of nanosized α-MnO2 used as cathode material for Li-batteries by Sn-doping. J Alloy Compd 509:9669CrossRefGoogle Scholar
  41. 41.
    Abouhilou F, Khereddine A, Alili B, Bradai D (2012) X-ray peak profile analysis of dislocation type, density and crystallite size distribution in cold deformed Pb–Ca–Sn alloys. Trans Nonferrous Metals Soc China 22:604CrossRefGoogle Scholar
  42. 42.
    Kim JG, Nam SH, Lee SH, Choi SM, Kim WB (2011) SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. ACS Appl Mater Interfaces 3:828CrossRefGoogle Scholar
  43. 43.
    Tang X, Li J, Hao J (2010) Significant enhancement of catalytic activities of manganese oxide octahedral molecular sieve by marginal amount of doping vanadium. Catal Commun 11:871CrossRefGoogle Scholar
  44. 44.
    Xiao F, Xu Y (2013) Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. J Mater Sci: Mater Electron 24:1913Google Scholar
  45. 45.
    Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697CrossRefGoogle Scholar
  46. 46.
    Subramanian V, Zhu H, Wei B (2008) Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem Phys Lett 453:242CrossRefGoogle Scholar
  47. 47.
    Wang Z, Qin Q, Xu W, Yan J, Wu Y (2016) Long cyclic life in manganese oxide-based electrodes. ACS Appl Mater Interfaces 8:18078CrossRefGoogle Scholar
  48. 48.
    Yang X, Zhu J, Qiu L, Li D (2011) Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater 23:2833CrossRefGoogle Scholar
  49. 49.
    Kim C, Ngoc BTN, Yang KS, Kojima M, Kim YA, Kim YJ et al (2007) Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride. Adv Mater 19:2341CrossRefGoogle Scholar
  50. 50.
    Pang X, Ma Z-Q, Zuo L (2009) Sn doped MnO2 electrode material for supercapacitors. Acta Phys Chim Sin 25:2433Google Scholar
  51. 51.
    Yan J, Khoo E, Sumboja A, Lee PS (2010) Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 4:4247CrossRefGoogle Scholar

Copyright information

© Korean Carbon Society 2019

Authors and Affiliations

  • Indu Kaushal
    • 1
  • Ashok K. Sharma
    • 1
    Email author
  • Priya Saharan
    • 1
  • Vinit Kumar
    • 1
  • Surender Duhan
    • 1
  1. 1.Thin Film Laboratory, Department of Materials Science and NanotechnologyDeenbandhu Chhotu Ram University of Science and TechnologyMurthalIndia

Personalised recommendations