Carbon Letters

, Volume 29, Issue 1, pp 57–63 | Cite as

Effects of multi-walled carbon nanotube and flow types on the electrical conductivity of polycarbonate/carbon nanotube nanocomposites

  • Kwan Han Yoon
  • Young Sil LeeEmail author
Original Article


Effects of multi-walled carbon nanotube (MWCNT) type and flow type (shear and elongational flow) on the electrical conductivity of polycarbonate (PC)/MWCNT nanocomposites were investigated. Two different MWCNTs produced a huge difference in electrical conductivity in an injection molded PC/MWCNT nanocomposite. It was observed that MWCNTs having a higher aspect ratio provide much lower electrical conductivity in injection molded PC/MWCNT nanocomposites while the conductivities of compression molded samples from two different MWCNTs were the same. We found that this is due to a difference in the deformability of the two MWCNTs. Nanocomposite samples prepared at a higher extensional rate and shear rate showed lower electrical conductivity. This is attributed to flow induced orientation of the MWCNTs. The experimental results were discussed in relation to variation in the tube–tube contact due to the change of the MWCNT orientation.


Multi-walled carbon nanotube Shear flow Elongational flow Electrical conductivity Polycarbonate Nanocomposite Percolation 



This paper was supported by Kumoh National Institute of Technology.


  1. 1.
    Green MJ, Behabtu N, Pasquali M, Adams WW (2009) Nanotubes as polymers. Polymer 50:4979CrossRefGoogle Scholar
  2. 2.
    Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Comput Sci Technol 69:1486CrossRefGoogle Scholar
  3. 3.
    Pötschke P, Abdel-Goada M, Alig I, Dudkinb S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863CrossRefGoogle Scholar
  4. 4.
    Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944CrossRefGoogle Scholar
  5. 5.
    Jin FL, Park SJ (2011) A review of the preparation and properties of carbon nanotubes-reinforced polymer composites. Carbon Lett 12:57CrossRefGoogle Scholar
  6. 6.
    Bose S, Khare RA, Moldenaers P (2010) Assessing the strengths and weakness of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer 51:975CrossRefGoogle Scholar
  7. 7.
    Hong J, Park DW, Shim SE (2010) A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers. Carbon Lett 11:347CrossRefGoogle Scholar
  8. 8.
    Yang B-X, Shi J-H, Pramoda KP, Goh SH (2008) Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes. Compos Sci Technol 68:2490CrossRefGoogle Scholar
  9. 9.
    Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11:937CrossRefGoogle Scholar
  10. 10.
    Safadi B, Andrews R, Grulke EA (2002) Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 84:2660CrossRefGoogle Scholar
  11. 11.
    Jin Z, Pramoda KP, Xu G, Goh SH (2001) Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chem Phys Lett 337:43CrossRefGoogle Scholar
  12. 12.
    Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247CrossRefGoogle Scholar
  13. 13.
    Zhang WD, Shen L, Phang IY, Liu T (2004) Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 37:256CrossRefGoogle Scholar
  14. 14.
    Geetha S, Kumar KKS, Rao CRK, Vijayan M, Trivedi DC (2009) EMI shielding: methods and materials—a review. J Appl Polym Sci 112:2073CrossRefGoogle Scholar
  15. 15.
    Taya M (2005) Electronic composites: modeling, characterization, processing, and MEMS applications. Cambridge University Press. Ch 6 Percolation model 173Google Scholar
  16. 16.
    Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574CrossRefGoogle Scholar
  17. 17.
    Zeng X, Xu X, Shenai PM, Kovalev E, Baudot C, Mathew N, Zhao Y (2011) Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. J Phys Chem C 115:21685CrossRefGoogle Scholar
  18. 18.
    Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486CrossRefGoogle Scholar
  19. 19.
    Abbasi S, Carreau PJ, Derdouri A (2010) Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: rheology, conductivity and mechanical properties. Polymer 51:922CrossRefGoogle Scholar
  20. 20.
    Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB (2004) Flow-induced properties of nanotube filled polymer materials. Nat Mater 3:564CrossRefGoogle Scholar
  21. 21.
    Pötschke P, Brunig H, Janke A, Fischer D, Jehnichen D (2005) Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning. Polymer 46:10355CrossRefGoogle Scholar
  22. 22.
    Villmow T, Pegel S, Pötschke P, Wagenknecht U (2008) Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Comput Sci Technol 68:777CrossRefGoogle Scholar
  23. 23.
    Park SB, Lee MS, Park M (2014) Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites. Carbon Lett 15:117CrossRefGoogle Scholar
  24. 24.
    Lee SH, Cho E, Jeon SH, Youn JR (2007) Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon 45:2810CrossRefGoogle Scholar
  25. 25.
    Kim K-S, Park S-J (2012) Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites. Carbon Lett 13:51CrossRefGoogle Scholar
  26. 26.
    Hu G, Zhao C, Zhang S, Yang M, Wang Z (2006) Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 47:480CrossRefGoogle Scholar
  27. 27.
    Monthioux M, Smith BW, Burteaux B, Claye A, Fischer JE, Luzzi DE (2001) Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon 39:1251CrossRefGoogle Scholar
  28. 28.
    Pötschke P, Vilmow T, Krause B (2013) Melt mixed PCL/MWCNT composites prepared at different rotation speeds: Characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution. Polymer 54:3071CrossRefGoogle Scholar
  29. 29.
    Eken AE, Tozzi EJ, Klingenberg DJ, Bauhofer W (2011) A simulation study on the effects of shear flow on the microstructure and electrical properties of carbon nanotube/polymer composites. Polymer 52:5178CrossRefGoogle Scholar
  30. 30.
    Alig I, Pötschke P, Lellinger D, Skipa T, Pegel S, Kasaliwai GR, Villmow T (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4CrossRefGoogle Scholar
  31. 31.
    Hilarius K, Lellinger D, Alig I, Villmow T, Pegel S, Pötschke P (2013) Influence of shear deformation on the electrical and rheological properties of combined filler networks in polymer melts: carbon nanotubes and carbon black in polycarbonate. Polymer 54:5865CrossRefGoogle Scholar
  32. 32.
    Grillard F, Jaillet C, Zakri C, Miaudet P, Derre A, Korzhenko A, Gaillard P, Poulin P (2012) Conductivity and percolation of nanotube based polymer composites in extensional deformations. Polymer 53:183CrossRefGoogle Scholar
  33. 33.
    Lee YS, Yoon KW (2015) Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites. Carbon Lett 16:86CrossRefGoogle Scholar

Copyright information

© Korean Carbon Society 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKumoh National Institute of TechnologyGumiRepublic of Korea
  2. 2.Industry-Academic Cooperation FoundationKumoh National Institute of TechnologyGumiRepublic of Korea

Personalised recommendations