Skip to main content
Log in

Evaluation of pyroligneous acid as a therapeutic agent against Salmonella in a simulated gastrointestinal tract of poultry

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pyroligneous acid (PA) was evaluated as a potential alternative to therapeutic antibiotics in poultry. Antimicrobial activity of PA was studied at acidic pH (2.0) and neutral pH (7.0) of the liquid against Salmonella enterica and Lactobacillus acidophilus. Acidic PA gave a MIC value of 0.8% (v/v) and 1.6% (v/v), and neutralized PA gave a MIC value of 1.6% (v/v) and 3.2% (v/v) against S. enterica and L. acidophilus respectively. Acidic PA was evaluated at different concentrations in a simulated poultry digestive tract and cecal fermentation to study its effect on the cecal microflora and fermentation profile. PA at a concentration of 1.6% (v/v) completely inhibited S. enterica and was also found to have a similar effect on lactobacilli count as compared with the control (p = 0.17). Additionally, PA at this concentration was found not to have a significant effect on acetic acid production after 24 h of cecal fermentation (p = 0.20).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GIT:

Gastrointestinal tract

PA:

Pyroligneous acid

SCFA:

Short-chain fatty acids

GC-MS:

Gas chromatography-mass spectrometry

MIC:

Minimum inhibitory concentration

BHI:

Brain heart infusion

MRS:

De Man, Rogosa, and Sharpe

BPLS:

Brilliant green phenol red lactose sucrose

ANOVA:

Analysis of variance

References

  1. Yang Y, Tellez G, Latorre JD, Ray PM, Hernandez X, Hargis BM, Ricke SC, Kwon YM (2018) Salmonella excludes Salmonella in poultry: confirming an old paradigm using conventional and barcode-tagging approaches. Front Vet Sci 5:101. https://doi.org/10.3389/fvets.2018.00101

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grant AQ, Hashem F, Parveen S (2016) Salmonella and campylobacter: antimicrobial resistance and bacteriophage control in poultry. Food Microbiol 53(Part B):104–109. https://doi.org/10.1016/j.fm.2015.09.008

    Article  PubMed  Google Scholar 

  3. Klasing K (1998) Nutritional modulation of resistance to infectious diseases. Poult Sci 77(8):1119–1125

    Article  CAS  PubMed  Google Scholar 

  4. Vandeplas S, Dauphin RD, Beckers Y, Thonart P, Thewis A (2010) Salmonella in chicken: current and developing strategies to reduce contamination at farm level. J Food Prot 73(4):774–785. https://doi.org/10.4315/0362-028X-73.4.774

    Article  CAS  PubMed  Google Scholar 

  5. Card RM, Cawthraw SA, Nunez-Garcia J, Ellis RJ, Kay G, Pallen MJ, Woodward MJ, Anjum MF (2017) An in-vitro chicken gut model demonstrates transfer of a multidrug resistance plasmid from Salmonella to commensal Escherichia coli. MBio 8(4):e00777–e00717. https://doi.org/10.1128/mBio.00777-17

    Article  PubMed  PubMed Central  Google Scholar 

  6. Suresh G, Das RK, Kaur Brar S, Rouissi T, Avalos Ramirez A, Chorfi Y, Godbout S (2018) Alternatives to antibiotics in poultry feed: molecular perspectives. Crit Rev Microbiol 44(3):318–335. https://doi.org/10.1080/1040841X.2017.1373062

    Article  CAS  PubMed  Google Scholar 

  7. Eeckhaut V, Wang J, Van Parys A, Haesebrouck F, Joossens M, Falony G, Raes J, Ducatelle R, Van Immerseel F (2016) The probiotic Butyricicoccus pullicaecorum reduces feed conversion and protects from potentially harmful intestinal microorganisms and necrotic enteritis in broilers. Front Microbiol 7:1416. https://doi.org/10.3389/fmicb.2016.01416

    Article  PubMed  PubMed Central  Google Scholar 

  8. Samanya M, K-e Y (2001) Morphological changes of the intestinal villi in chickens fed the dietary charcoal powder including wood vinegar compounds. J Poult Sci 38(4):289–301. https://doi.org/10.2141/jpsa.38.289

    Article  CAS  Google Scholar 

  9. Youn B, Nam K, Chang K, Hwang S, Choe I (2005) Effects of wood vinegar addition for meat quality improvement of old layer. Korean J Poult Sci 32(2):101–106

    Google Scholar 

  10. Grewal A, Abbey L, Gunupuru LR (2018) Production, prospects and potential application of pyroligneous acid in agriculture. J Anal Appl Pyrolysis 135:152–159. https://doi.org/10.1016/j.jaap.2018.09.008

    Article  CAS  Google Scholar 

  11. Mathew S, Zakaria ZA (2015) Pyroligneous acid—the smoky acidic liquid from plant biomass. Appl Microbiol Biotechnol 99(2):611–622. https://doi.org/10.1007/s00253-014-6242-1

    Article  CAS  PubMed  Google Scholar 

  12. Watarai S (2005) Eliminating the carriage of Salmonella enterica serovar Enteritidis in domestic fowls by feeding activated charcoal from bark containing wood vinegar liquid (Nekka-Rich). Poult Sci 84(4):515–521. https://doi.org/10.1093/ps/84.4.515

    Article  CAS  PubMed  Google Scholar 

  13. Roy C, Blanchette D, de Caumia B (2000) Industrial scale demonstration of the Pyrocycling (TM) process for the conversion of biomass to biofuels and chemicals. Paper presented at the First World Conference and Exhibition on Biomass for Energy and Industry, Sevilla, Spain, June 5-9, 2000

  14. Suresh G, Pakdel H, Rouissi T, Brar SK, Fliss I, Roy C (2019) In vitro evaluation of antimicrobial efficacy of pyroligneous acid from softwood mixture. Biotechnol Res Innov 3(1):47–53. https://doi.org/10.1016/j.biori.2019.02.004

    Article  Google Scholar 

  15. Fernandez B, Le Lay C, Jean J, Fliss I (2013) Growth, acid production and bacteriocin production by probiotic candidates under simulated colonic conditions. J Appl Microbiol 114(3):877–885. https://doi.org/10.1111/jam.12081

    Article  CAS  PubMed  Google Scholar 

  16. Meimandipour A, Shuhaimi M, Hair-Bejo M, Azhar K, Kabeir BM, Rasti B, Yazid AM (2009) In vitro fermentation of broiler cecal content: the role of lactobacilli and pH value on the composition of microbiota and end products fermentation. Lett Appl Microbiol 49(4):415–420. https://doi.org/10.1111/j.1472-765X.2009.02674.x

    Article  CAS  PubMed  Google Scholar 

  17. Donalson LM, Kim WK, Chalova VI, Herrera P, McReynolds JL, Gotcheva VG, Vidanović D, Woodward CL, Kubena LF, Nisbet DJ, Ricke SC (2008) In vitro fermentation response of laying hen cecal bacteria to combinations of fructooligosaccharide prebiotics with alfalfa or a layer ration. Poult Sci 87(7):1263–1275. https://doi.org/10.3382/ps.2007-00179

    Article  CAS  PubMed  Google Scholar 

  18. Suresh G, Santos DU, Rouissi T, Brar SK, Mehdi Y, Godbout S, Chorfi Y, Ramirez AA (2019) Production and in-vitro evaluation of an enzyme formulation as a potential alternative to feed antibiotics in poultry. Process Biochem 80:9–16. https://doi.org/10.1016/j.procbio.2019.01.023

    Article  CAS  Google Scholar 

  19. Giannenas I, Papaneophytou C, Tsalie E, Triantafillou E, Tontis D, Kontopidis G (2014) The effects of benzoic acid and essential oil compounds in combination with protease on the performance of chickens. J Anim Feed Sci 23(1):73–81

    Article  Google Scholar 

  20. Lei F, Yin Y, Wang Y, Deng B, Yu HD, Li L, Xiang C, Wang S, Zhu B, Wang X (2012) Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Appl Environ Microbiol 78(16):5763–5772. https://doi.org/10.1128/AEM.00327-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150. https://doi.org/10.1016/j.jaap.2013.10.013

    Article  CAS  Google Scholar 

  22. Rattanawut J, Todsadee A, K-e Y (2017) Effects of bamboo charcoal powder including vinegar supplementation on performance, eggshell quality, alterations of intestinal villi and intestinal pathogenic bacteria populations of aged laying hens. Ital J Anim Sci 16(2):259–265. https://doi.org/10.1080/1828051X.2017.1283544

    Article  CAS  Google Scholar 

  23. Hou X, Qiu L, Luo S, Kang K, Zhu M, Yao Y (2018) Chemical constituents and antimicrobial activity of wood vinegars at different pyrolysis temperature ranges obtained from Eucommia ulmoides Olivers branches. RSC Adv 8(71):40941–40949. https://doi.org/10.1039/C8RA07491G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oramahi HA, Yoshimura T, Diba F, Setyawati D (2018) Antifungal and antitermitic activities of wood vinegar from oil palm trunk. J Wood Sci 64(3):311–317. https://doi.org/10.1007/s10086-018-1703-2

    Article  CAS  Google Scholar 

  25. Xu H, Zhao J, Yang J, Xie J, Zhang N, Jiang J (2020) Effects of apple and pear wood vinegar components on Pleurotus ostreatus mycelium growth. BioResources 15(2):2961–2970. https://doi.org/10.15376/biores.15.2.2961-2970

    Article  CAS  Google Scholar 

  26. Fagernäs L, Kuoppala E, Tiilikkala K, Oasmaa A (2012) Chemical composition of birch wood slow pyrolysis products. Energy Fuel 26(2):1275–1283. https://doi.org/10.1021/ef2018836

    Article  CAS  Google Scholar 

  27. Li R, Narita R, Nishimura H, Marumoto S, Yamamoto SP, Ouda R, Yatagai M, Fujita T, Watanabe T (2017) Antiviral activity of phenolic derivatives in pyroligneous acid from hardwood, softwood, and bamboo. ACS Sustain Chem Eng 6(1):119–126. https://doi.org/10.1021/acssuschemeng.7b01265

    Article  CAS  Google Scholar 

  28. Butt D (2006) Formation of phenols from the low-temperature fast pyrolysis of radiata pine (Pinus radiata): part II. Interaction of molecular oxygen and substrate water. J Anal Appl Pyrolysis 76(1):48–54. https://doi.org/10.1016/j.jaap.2005.01.009

    Article  CAS  Google Scholar 

  29. Wei Q, Ma X, Dong J (2010) Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches. J Anal Appl Pyrolysis 87(1):24–28. https://doi.org/10.1016/j.jaap.2009.09.006

    Article  CAS  Google Scholar 

  30. Harada K, Iguchi A, Yamada M, Hasegawa K, Nakata T, Hikasa Y (2013) Determination of maximum inhibitory dilutions of bamboo pyroligneous acid against pathogenic bacteria from companion animals: an in vitro study. J Vet Adv 3(11):300–305

    Google Scholar 

  31. Abas FZ, Zakaria ZA, Ani FN (2018) Antimicrobial properties of optimized microwave-assisted pyroligneous acid from oil palm fiber. J Appl Pharm Sci 8(07):65–71. https://doi.org/10.7324/JAPS.2018.8711

    Article  CAS  Google Scholar 

  32. Choi JY, Shinde PL, Kwon IK, Song YH, Chae BJ (2009) Effect of wood vinegar on the performance, nutrient digestibility and intestinal microflora in weanling pigs. Asian Australas J Anim Sci 22(2):267–274. https://doi.org/10.5713/ajas.2009.80355

    Article  CAS  Google Scholar 

  33. Wang HF, Gao K, Wang C, Zhang WM, Liu JX (2013) Effects of feeding bamboo vinegar and acidifier as an antibiotic substitute on the growth performance and intestinal bacterial communities of weaned piglets. Acta Agric Scand A Anim Sci 63(3):143–150. https://doi.org/10.1080/09064702.2013.845244

    Article  CAS  Google Scholar 

  34. Kupittayanant P, Kupittayanant S (2017) Effects of wood vinegar on the protection of diarrhea in weaning pigs. Planta Med Int Open 4(S 01):Mo-PO-242. https://doi.org/10.1055/s-0037-1608288

    Article  Google Scholar 

  35. Rattanawut J (2013) Effects of dietary bamboo charcoal powder including bamboo vinegar liquid supplementation on growth performance, fecal microflora population and intestinal morphology in Betong chickens. J Poult Sci:0130109. https://doi.org/10.2141/jpsa.0130109

Download references

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (Engage Grant 122842) and Fonds de recherche du Québec - Nature et technologies (FRQNT Equipe).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Gayatri Suresh and Hooshang Pakdel. The first draft of the manuscript was written by Gayatri Suresh, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Satinder Kaur Brar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Miliane Moreira Soares de Souza.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Pyroligneous acid (PA) produced by softwood pyrolysis and analyzed by GC-MS.

• MIC determined for acidic and neutralized PA against S. enterica and Lactobacillus.

• In vitro cecal fermentation with feed with different PA concentrations for 24 h.

• 1.6% (v/v) PA inhibited Salmonella completely and had no effect on Lactobacilli.

• 1.6% (v/v) PA had no significant effect on SCFA production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, G., Pakdel, H., Rouissi, T. et al. Evaluation of pyroligneous acid as a therapeutic agent against Salmonella in a simulated gastrointestinal tract of poultry. Braz J Microbiol 51, 1309–1316 (2020). https://doi.org/10.1007/s42770-020-00294-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00294-1

Keywords

Navigation