Effects of human β-defensin 3 fused with carbohydrate-binding domain on the function of type III secretion system in Pseudomonas aeruginosa PA14


Antimicrobial peptides are considered to be one of the candidate antimicrobial agents for antibiotic-resistant bacterial infection in the future. The effects of antimicrobial peptide hBD3-CBD on Pseudomonas aeruginosa PA14 and PA14 ΔexsA were analyzed by the bactericidal effects, hemolysis assays, pyocyanin pigment productions, and virulence factor expressions (exoU, exoS, hcnA, and lasB). Pyocyanin production and virulence factor expressions are important features of the type III secretion system in Pseudomonas aeruginosa. HBD3-CBD killed PA14 and PA14 ΔexsA with similar efficiency; it lowered the hemolysis levels of PA14 and PA14 ΔexsA and reduced the pyocyanin production, biofilm formation, and exoU, exoS, and lasB expressions in PA14. Compared with PA14, PA14 ΔexsA showed a lower hemolysis effect, pyocyanin production, exoU, and lasB expressions. The effects of hBD3-CBD on the PA14 toxin secretion were similar to the changes in the type III secretion system mutant isolate PA14 ΔexsA. Our results demonstrated that the type III secretion system was involved in the biological functions on PA 14 from hBD3-CBD.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52:381–390 quiz 391-382

  2. 2.

    Harder J, Glaser R, Schroder JM (2007) The role and potential therapeutical applications of antimicrobial proteins in infectious and inflammatory diseases. Endocr Metab Immune Disord Drug Targets 7:75–82

  3. 3.

    Dunsche A, Açil Y, Dommisch H, Siebert R, Schröder JM, Jepsen S (2002) The novel human beta-defensin-3 is widely expressed in oral tissues. Eur J Oral Sci 110:121–124

  4. 4.

    Dhople V, Krukemeyer A, Ramamoorthy A (2006) The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta 1758:1499–1512

  5. 5.

    Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

  6. 6.

    Bassetti M, Vena A, Croxatto A et al (2018) How to manage Pseudomonas aeruginosa infections. Drugs Context 7:212527

  7. 7.

    Lin P, Li Y, Dong K, Li Q (2015) The antibacterial effects of an antimicrobial peptide human beta-defensin 3 fused with carbohydrate-binding domain on Pseudomonas aeruginosa PA14. Curr Microbiol 71:170–176

  8. 8.

    Beaudoin T, Stone TA, Glibowicka M et al (2018) Activity of a novel antimicrobial peptide against Pseudomonas aeruginosa biofilms. Sci Rep 8:14728

  9. 9.

    Mohammed I, Said DG, Nubile M et al (2019) Cathelicidin-derived synthetic peptide improves therapeutic potential of vancomycin against. Front Microbiol 10:2190

  10. 10.

    Lombardi C, Tolchard J, Bouillot S et al (2019) Structural and functional characterization of the type three secretion system (T3SS) needle of Pseudomonas aeruginosa. Front Microbiol 10:573

  11. 11.

    Galle M, Carpentier I, Beyaert R (2012) Structure and function of the type III secretion system of Pseudomonas aeruginosa. Curr Protein Pept Sci 13:831–842

  12. 12.

    Sharma P, Guha S, Garg P et al (2018) Differential expression of antimicrobial peptides in corneal infection and regulation of antimicrobial peptides and reactive oxygen species by type III secretion system of Pseudomonas aeruginosa. Pathog Dis 76(1).

  13. 13.

    Li Q, Zhou Y, Dong K et al (2010) Potential therapeutic efficacy of a bactericidal-immunomodulatory fusion peptide against methicillin-resistant Staphylococcus aureus skin infection. Appl Microbiol Biotechnol 86:305–309

  14. 14.

    Rossignol G, Merieau A, Guerillon J et al (2008) Involvement of a phospholipase C in the hemolytic activity of a clinical strain of Pseudomonas fluorescens. BMC Microbiol 8:189

  15. 15.

    Yang H, Shan Z, Kim J, Wu W, Lian W, Zeng L, Xing L, Jin S (2007) Regulatory role of PopN and its interacting partners in type III secretion of Pseudomonas aeruginosa. J Bacteriol 189:2599–2609

  16. 16.

    Essar DW, Eberly L, Hadero A, Crawford IP (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900

  17. 17.

    Berthelot P, Attree I, Plesiat P et al (2003) Genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bacteremia isolates: evidence for a possible association between O serotypes and exo genes. J Infect Dis 188:512–518

  18. 18.

    Gokalsin B, Sesal NC (2016) Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa. World J Microbiol Biotechnol 32:150

  19. 19.

    Eleaume H, Jabbouri S (2004) Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J Microbiol Methods 59:363–370

  20. 20.

    Gao N, Kumar A, Jyot J et al (2010) Flagellin-induced corneal antimicrobial peptide production and wound repair involve a novel NF-kappaB-independent and EGFR-dependent pathway. PLoS One 5:e9351

  21. 21.

    Beisswenger C, Bals R (2005) Functions of antimicrobial peptides in host defense and immunity. Curr Protein Pept Sci 6:255–264

  22. 22.

    Sechet E, Telford E, Bonamy C et al (2018) Natural molecules induce and synergize to boost expression of the human antimicrobial peptide β-defensin-3. Proc Natl Acad Sci U S A 115:E9869–e9878

  23. 23.

    Cody WL, Pritchett CL, Jones AK et al (2009) Pseudomonas aeruginosa AlgR controls cyanide production in an AlgZ-dependent manner. J Bacteriol 191:2993–3002

  24. 24.

    Deng X, Li M, Pan X et al (2017) Fis regulates type III secretion system by influencing the transcription of exsA in Pseudomonas aeruginosa strain PA14. Front Microbiol 8:669

  25. 25.

    Memariani H, Shahbazzadeh D, Ranjbar R et al (2017) Design and characterization of short hybrid antimicrobial peptides from pEM-2, mastoparan-VT1, and mastoparan-B. Chem Biol Drug Des 89:327–338

  26. 26.

    Li Q, Huang J, Guo H et al (2012) Bactericidal activity against meticillin-resistant Staphylococcus aureus of a novel eukaryotic therapeutic recombinant antimicrobial peptide. Int J Antimicrob Agents 39:496–499

  27. 27.

    Ho Sui SJ, Lo R, Fernandes AR et al (2012) Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int J Antimicrob Agents 40:246–251

  28. 28.

    Sawa T, Shimizu M, Moriyama K et al (2014) Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. Crit Care 18:668

  29. 29.

    Chowdhury N, Bagchi A (2016) Molecular insight into the activity of LasR protein from Pseudomonas aeruginosa in the regulation of virulence gene expression by this organism. Gene. 580:80–87

  30. 30.

    Rangel SM, Logan LK, Hauser AR (2014) The ADP-ribosyltransferase domain of the effector protein ExoS inhibits phagocytosis of Pseudomonas aeruginosa during pneumonia. MBio. 5:e01080–e01014

  31. 31.

    Roshani-Asl P, Rashidi N, Shokoohizadeh L, Zarei J (2018) Relationship among antibiotic resistance, biofilm formation and lasB gene in Pseudomonas Aeruginosa isolated from burn patients. Clin Lab 64:1477–1484

  32. 32.

    Yu H, He X, Xie W, Xiong J, Sheng H, Guo S, Huang C, Zhang D, Zhang K (2014) Elastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation. Can J Microbiol 60:227–235

  33. 33.

    Tettmann B, Niewerth C, Kirschhöfer F et al (2016) Enzyme-mediated quenching of the quinolone signal (PQS) promotes biofilm formation of by increasing Iron availability. Front Microbiol 7:1978

  34. 34.

    Brutinel ED, Vakulskas CA, Yahr TL (2009) Functional domains of ExsA, the transcriptional activator of the Pseudomonas aeruginosa type III secretion system. J Bacteriol 191:3811–3821

  35. 35.

    Shrestha M, Xiao Y, Robinson H et al (2015) Structural analysis of the regulatory domain of ExsA, a key transcriptional regulator of the type three secretion system in Pseudomonas aeruginosa. PLoS One 10:e0136533

  36. 36.

    Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329

  37. 37.

    Wu X, Li Z, Li X et al (2017) Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des Devel Ther 11:939–946

  38. 38.

    Li G, Lu S, Shen M et al (2017) Characterization and interstrain transfer of prophage pp3 of Pseudomonas aeruginosa. PLoS One 12:e0174429

Download references

Author information

Correspondence to Ke Dong or Qingtian Li.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tânia A. Tardelli Gomes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Liu, Y., Dong, K. et al. Effects of human β-defensin 3 fused with carbohydrate-binding domain on the function of type III secretion system in Pseudomonas aeruginosa PA14. Braz J Microbiol (2020) doi:10.1007/s42770-020-00223-2

Download citation


  • Antimicrobial peptide
  • hBD3
  • Pseudomonas aeruginosa
  • T3SS