Time-kill curves of daptomycin and Monte Carlo simulation for the treatment of bacteraemia caused by Enterococcus faecium

  • Bruna Kochhann Menezes
  • Izabel Almeida Alves
  • Keli Jaqueline Staudt
  • Betina Montanari Beltrame
  • Letícia Venz
  • Lessandra Michelin
  • Bibiana Verlindo Araujo
  • Leandro TassoEmail author
Clinical Microbiology - Research Paper



The aim of this study was to investigate the effect of daptomycin against vancomycin-resistant Enterococcus faecium bacteraemia using computer modelling.


Data obtained in vitro from time-kill curves were evaluated by PK/PD modelling and Monte Carlo simulations to determine the logarithmic reduction in the number of colony-forming units (CFU)/mL over 18 days of daptomycin treatment at 6, 8, and 10 mg/kg doses every 24 or 48 h and with variations in creatinine clearance (CLCR) of 15–29, 30–49, and 50–100 mL/min/1.73 m2. Monte Carlo simulations were performed to evaluate the probability of target attainment (PTA) for an area under the unbound drug concentration-time curve/minimum inhibitory concentration (fAUC/MIC) > 36 at the same doses and CLCR.


Static time-kill model was employed to investigate the antibacterial efficacy of constant daptomycin concentrations. The time-kill curve analysis was performed using mathematical modelling based on a Hill coefficient factor. There was an expressive reduction (> 2 Log CFU/mL) over 18 days of daptomycin treatment in 75th percentile of individuals with CLCR of 15–100 mL/min/1.73 m2) with daptomycin 6–10 mg/kg/day, except for daptomycin every 48 h. Using fAUC/MIC > 36, PTA was > 90% at MICs ≤ 2 μg/mL.


Higher daptomycin doses were associated with higher mortality in time-kill curves. The simulations indicated that independent of the CLCR the therapeutic responses of VRE occur with doses of daptomycin ≥ 6 mg/kg/day and daptomycin every 48 h is insufficient to treat enterococcal bacteraemia.


Daptomycin Bacteraemia Enterococcus faecium PK/PD modelling 


Authors’ contributions

All authors were involved in the content development of the manuscript, reviewed all drafts, and approved the final version.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Sauermann R, Rothernburger M, Graninger W (2008) Daptomycin: a review 4 years after first approval. Pharmacology. 81:79–91CrossRefGoogle Scholar
  2. 2.
    Estes KS, Derendorf H (2010) Comparison of the pharmacokinetic properties of vancomycin, linezolid, tigecycline, and daptomycin. Eur J Med Res 15:533–543CrossRefGoogle Scholar
  3. 3.
    Rose ER, Rybak MJ, Kaatz GW (2007) Evaluation of daptomycin treatment of Staphylococcus aureus bacterial endocarditis: an in vitro and in vivo simulation using historical and current dosing strategies. J Antimicrob Chemother 60:334–340CrossRefGoogle Scholar
  4. 4.
    Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681CrossRefGoogle Scholar
  5. 5.
    Laupland KB, Deirdre LC (2014) Population-based epidemiology and microbiology of community-onset bloodstream infections. Clin Microbiol Rev 27:647–664CrossRefGoogle Scholar
  6. 6.
    Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A et al (2013) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 34:1–14CrossRefGoogle Scholar
  7. 7.
    Arias CA, Murray BE (2012) The rise of the enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278CrossRefGoogle Scholar
  8. 8.
    Jones RN, Flonta M, Gurler N, Cepparulo M, Mendes RE, Castanheira M (2014) Resistance surveillance program report for selected European nations: 2011. Diagn Microbiol Infect Dis 78:429–436CrossRefGoogle Scholar
  9. 9.
    O’Driscoll T, Crank CW (2015) Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist 8:217–230PubMedPubMedCentralGoogle Scholar
  10. 10.
    Canton R, Ruiz-Garbajosa P, Chaves RL, Johnson AP (2010) A potential role for daptomycin in enterococcal infections: what is the evidence? J Antimicrob Chemother 65:1126–1136CrossRefGoogle Scholar
  11. 11.
    Rathi C, Lee RE, Meibohm B (2016) Translational PK/PD of anti-infective therapeutics. Drug Discov Today Technol 21–22:41–49CrossRefGoogle Scholar
  12. 12.
    Wei C, Ni W, Cai X, Cui J (2015) A Monte Carlo pharmacokinetic simulation to evaluate the efficacy of minocycline, tigecycline, moxifloxacin and levofloxacin in the treatment of hospital-acquired pneumonia causes by Stenotrophomonas maltophila. Infect Dis (Lond) 47:846–851CrossRefGoogle Scholar
  13. 13.
    Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: twenty fourth informational supplement (2017) CLSI document M100-S27. Wayne, PennsylvaniaGoogle Scholar
  14. 14.
    Nielsen EI, Friberg LE (2013) Pharmacokinetics-pharmacodynamics modeling of antibacterial drugs. Pharmacol Rev 65:1053–1090CrossRefGoogle Scholar
  15. 15.
    Di Paolo A, Tascini C, Polollo M, Gemignani G, Nielsen EI, Bocci G et al (2013) Population pharmacokinetics of daptomycin in patients affected by severe gram-positive infections. Int J Antimicrob Agents 42:250–255CrossRefGoogle Scholar
  16. 16.
    Benvenuto M, Benziger DP, Yankelev S, Vigliani G (2006) Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother 50:3245–3249CrossRefGoogle Scholar
  17. 17.
    Johnson A (2006) Daptomycin in the treatment of skin, soft-tissue and invasive infections due to gram-positive bacteria. Future Microbiol 1:255–265CrossRefGoogle Scholar
  18. 18.
    Pachaly JR, Fernando H, De Brito V (2001) Interspecific allometric scaling. In: Murray E, Fowler DVM (eds) Biology, medicine and surgery of South American wild animals. Iowa State University Press, Ames, Iowa, pp 475–481Google Scholar
  19. 19.
    Dudley MN, Ambrose PG (2000) Pharmacodynamics in the study of drug resistance and establishing in vitro susceptibility breakpoints: ready for prime time. Curr Opin Microbiol 3:515–521CrossRefGoogle Scholar
  20. 20.
    EUCAST. 2017. Available at: (last accessed 15 May 2019).
  21. 21.
    Treyaprasert W, Schmidt S, Rand KH, Suvanakoot U, Derendorf H (2007) Pharmacokinetic/pharmacodynamic modeling of in vitro activity of azithromycin against four different bacterial strains. Int J Antimicrob Agents 29:263–270CrossRefGoogle Scholar
  22. 22.
    Cojutti PG, Candoni A, Ramos-Martin V, Lazzarotto D, Zannier ME, Fanin R et al (2017) Population pharmacokinetics and dosing considerations for the use of daptomycin in adult patients with haematological malignancies. J Antimicrob Chemother 72:2342–2350CrossRefGoogle Scholar
  23. 23.
    King EA, MaCoy D, Desai S, Nvirenda T, Bicking K (2011) Vancomycin-resistant enterococcal bacteraemia and daptomycin: are higher doses necessary? J Antimicrob Chemother 66:2112–2118CrossRefGoogle Scholar
  24. 24.
    Shukla BS, Shelbume S, Reyes K, Kamboi M, Lewis JD, Ricon SL et al (2016) Influence of minimum inhibitory concentration of outcomes of Enterococcus faecium bacteremia treated with daptomycin: is it time to change the breakpoint? Clin Infect Dis 62:1514–1520CrossRefGoogle Scholar
  25. 25.
    Kidd JM, Abdelraouf K, Asempa TE, Humphries RM, Nicolau DP (2018) Pharmacodynamics of Daptomycin against Enterococcus faecium and Enterococcus faecalis in the murine thigh infection model. Antimicrob Agents Chemother 24:e00506–e00518Google Scholar
  26. 26.
    Chong PP, Duin DV, Bangdiwala A, Ivanova A, Miller WC, Weber DJ et al (2016) Vancomycin-resistant enterococcal bloodstream infections in hematopoietic stem cell transplant recipients and patients with hematologic malignancies: impact of daptomycin MICs of 3 to 4 mg/L. Clin Ther 38:2468–2476CrossRefGoogle Scholar
  27. 27.
    Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL (2005) Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother 55(5):601–607CrossRefGoogle Scholar
  28. 28.
    Czock D, Keller F (2007) Mechanism-based pharmacokinetic–pharmacodynamic modeling of antimicrobial drug effects. J Pharmacokinet Pharmacodyn 34(6):727–751CrossRefGoogle Scholar
  29. 29.
    Nielsen EI, Cars O, Friberg LE (2011 Oct) Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization. Antimicrob Agents Chemother 55(10):4619–4630CrossRefGoogle Scholar
  30. 30.
    Chuang YC, Lin HY, Chen CY, Lin CY, Wang JT, Chen YC et al (2017) Effect of Daptomycin dose on the outcome of vancomycin-resistant, daptomycin-susceptible Enterococcus faecium bacteremia. Clin Infect Dis 64:1026–1034CrossRefGoogle Scholar
  31. 31.
    Moise PA, Hershberger E, Amodio-Groton MI, Lamp KC (2009) Safety and clinical outcomes when utilizing high-dose (> or =8 mg/kg) daptomycin therapy. Ann Pharmacother 43(7):1211–1219CrossRefGoogle Scholar
  32. 32.
    Seaton RA, Menichetti F, Dalekos G, Beiras-Fernandez A, Nacinovich F, Pathan R, Hamed K (2015) Evaluation of effectiveness and safety of high-dose daptomycin: results from patients included in the European Cubicin®. Outcomes Registry and Experience. Adv Ther 32(12):1192–1205CrossRefGoogle Scholar
  33. 33.
    Byren I, Rege S, Campanaro E, Yankelev S, Anastasiou D, Kuropatkin G, Evans R (2012) Randomized controlled trial of the safety and efficacy of daptomycin versus standard-of-care therapy for management of patients with osteomyelitis associated with prosthetic devices undergoing two-stage revision arthroplasty. Antimicrob Agents Chemother 56(11):5626–5632CrossRefGoogle Scholar
  34. 34.
    Casapao AM, Kullar R, Davis SL, Levine DP, Zhao JJ, Potoski BA et al (2013) Multicenter study of high-dose daptomycin for treatment of enterococcal infections. Antimicrob Agents Chemother 57:4190–4196CrossRefGoogle Scholar
  35. 35.
    Crank CW, Scheetz MH, Brielmaier B, Rose WE, Patel GP, Ritchie DJ, Segreti J (2010) Comparison of outcomes from daptomycin or linezolid treatment for vancomycin-resistant enterococcal bloodstream infections: a retrospective, multicenter, cohort study. Clin Ther 32:1713–1719CrossRefGoogle Scholar
  36. 36.
    Gould IM, Miró JM, Rybak MJ (2013) Daptomycin: the role of high-dose and combination therapy for Gram-positive infections. Int J Antimicrob Agents 42:202–210CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2020

Authors and Affiliations

  • Bruna Kochhann Menezes
    • 1
  • Izabel Almeida Alves
    • 2
  • Keli Jaqueline Staudt
    • 3
  • Betina Montanari Beltrame
    • 4
  • Letícia Venz
    • 4
  • Lessandra Michelin
    • 4
  • Bibiana Verlindo Araujo
    • 5
  • Leandro Tasso
    • 1
    Email author
  1. 1.Health Sciences Graduate ProgramUniversity of Caxias do SulCaxias do SulBrazil
  2. 2.Pharmaceutical Sciences Graduate ProgramFederal University of Rio Grande do SulPorto AlegreBrazil
  3. 3.Medical Sciences Graduate ProgramFederal University of Rio Grande do SulPorto AlegreBrazil
  4. 4.College of PharmacyUniversity of Caxias do SulCaxias do SulBrazil
  5. 5.College of PharmacyFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations