Insights into the interaction of Scedosporium apiospermum, Scedosporium aurantiacum, Scedosporium minutisporum, and Lomentospora prolificans with lung epithelial cells

  • Thaís Pereira de Mello
  • Ana Carolina Aor
  • Marta Helena Branquinha
  • André Luis Souza dos SantosEmail author
Bacterial and Fungal Pathogenesis - Research Paper


Scedosporium spp. and Lomentospora prolificans are filamentous fungi that emerged as human pathogens; however, their mechanisms of virulence/pathogenesis are still largely unknown. In the present work, we have evaluated the interaction of S. apiospermum, S. minutisporum, S. aurantiacum, and L. prolificans with lung epithelial cells (A549 line). The results showed that conidia were able to interact with A549 cells, displaying association indexes of 73.20, 117.98, 188.01, and 241.63 regarding S. apiospermum, L. prolificans, S. minutisporum, and S. aurantiacum, respectively. Light microscopy images evidenced morphological changes in epithelial cells, including rounding and detachment, especially during the interaction with L. prolificans. Plasma membrane injuries were detected in A549 cells after 1 h of co-culturing with S. aurantiacum and S. minutisporum and after 4 h with S. apiospermum and L. prolificans, as judged by the passive incorporation of propidium iodide. After 24 h of fungi-epithelial cells interaction, only mycelia were observed covering the A549 monolayer. Interestingly, the mycelial trap induced severe damage in the A549 cells, culminating in epithelial cell death. Our results demonstrate some relevant events that occur during the contact between lung epithelial cells and Scedosporium/Lomentospora species, including conidial adhesion and hyphal growth with consequent irreversible injury on A549 cells, adding light to the infection process caused by these opportunistic and multidrug-resistant fungi.


Scedosporium Lomentospora Cellular interaction Lung epithelial cells Adhesion Injury 


Funding information

This work was financially supported by grants from Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – Finance code 001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Benedict K, Park BJ (2014) Invasive fungal infections after natural disasters. Emerg Infect Dis 20:349–355. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Bergter E, Rollin-Pinheiro R, de Meirelles JV, Xisto MIDS, Ranque S, Havlicek V, Vandeputte P, Govic YL, Bouchara JP, Giraud S, Chen S, Rainer J, Alastruey-Izquierdo A, Martin-Gomez MT, López-Soria LM, Peman J, Schwarz C, Bernhardt A, Tintelnot K, Capilla J, Martin-Vicente A, Cano-Lira J, Nagl M, Lackner M, Irinyi L, Meyer W, de Hoog S, Hernando FL (2017) Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol 56:S101–D125. CrossRefGoogle Scholar
  3. 3.
    McCarthy MW, Denning DW, Walsh TJ (2017) Future research priorities in fungal resistance. J Infect Dis 216:S484–S492. CrossRefPubMedGoogle Scholar
  4. 4.
    Lackner M, Guarro J (2013) Pathogenesis of Scedosporium. Curr Fungal Infect Rep 7:326–333CrossRefGoogle Scholar
  5. 5.
    Cortez KJ, Roildes E, Quiroz-Telles F, Meletiadis J, Antachopoulos C, Knudsen T, Buchanan W, Milanovich J, Sutton DA, Fothergill A, Rinaldi MG, Shea YR, Zaoutis T, Kottilil S, Walsh TJ (2008) Infections caused by Scedosporium spp. Clin Microbiol Rev 21:157–197. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Filler SG, Sheppard DC (2006) Fungal invasion of normally non-phagocytic host cells. PLoS Pathog 2:e129. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Aor AC, Mello TP, Sangenito LS, Fonseca BB, Rozental S, Lione VF, Veiga VF, Branquinha MH, Santos ALS (2018) Ultrastructural viewpoints on the interaction events of Scedosporium apiospermum conidia with lung and macrophage cells. Mem Inst Oswaldo Cruz 113:e180311. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mello TP, Bitencourt VC, Liporagi-Lopes L, Aor AC, Branquinha SALS (2019) Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens. Fungal Biol Rev 33:16–46. CrossRefGoogle Scholar
  9. 9.
    Escobar N, Ordonez SR, Wösten HAB, Haas PJA, Cock H, Haagsman HP (2016) Hide, keep quiet, and keep low: properties that make Aspergillus fumigatus a successful lung pathogen. Front Microbiol 7:438. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gil-Lamaignere C, Winn RM, Simitsopoulou M, Maloukou A, Walsh TJ, Roilides E (2005) Interferon gamma and granulocyte-macrophage colony-stimulating fator augment the antifungal activity of human polymorphonuclear leukocytes against Scedosporium spp.: comparision with Aspergillus spp. Med Mycol 43:253–260. CrossRefPubMedGoogle Scholar
  11. 11.
    Pinto MR, Sá ACM, Limongi CL, Rozental S, Santos ALS, Barreto-Bergter (2004) Involvement of peptidorhamnomannan in the interaction of Pseudallescheria boydii and HEp2 cells. Microbes Infect 6:1259–1267. CrossRefPubMedGoogle Scholar
  12. 12.
    Bittencourt VCB, Figueiredo RT, Silva RB, Mourão-Sá DS, Fernandez PL, Sassaki GL, Mulloy D, Bozza MT, Barreto-Bergter E (2006) An alfa-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation. J Biol Chem 281:22614–22623CrossRefGoogle Scholar
  13. 13.
    Silva BA, Pinto MR, Soares RM, Barreto-Bergter E, Santos ALS (2006) Pseudallescheria boydii releases metallopeptidases capable of cleaving several proteinaceous compounds. Res Microbiol 157:425–432. CrossRefPubMedGoogle Scholar
  14. 14.
    Santos ALS, Bittencourt VCB, Pinto MR, Silva BA, Barreto-Bergter E (2009) Biochemical characterization of potential virulence markers in the human fungal pathogen Pseudallescheria boydii. Med Mycol 47:375–386. CrossRefPubMedGoogle Scholar
  15. 15.
    Rollin-Pinheiro R, Liporagi-Lopes LC, Meirelles JV, Souza LM, Barreto-Bergter E (2014) Characterization of Scedosporium apiospermum glucosylceramides and their involvement in fungal development and macrophage functions. PLoS One 9:e98149. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xisto MI, Bittencourt VC, Liporagi-Lopes LC, Haido RMT, Mendonça MSA, Sassaki G, Figueiredo RT, Romanos MT, Barreto-Bergter E (2015) O-glycosylation in cell wall proteins in Scedosporium prolificans is critical for phagocytosis and inflammatory cytokines production by macrophages. PLoS One 10(4):e0123189. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mello TP, Aor AC, Oliveira SS, Branquinha MH, Santos ALS (2016) Conidial germination in Scedosporium apiospermum, Scedosporium aurantiacum, Scedosporium minutisporum and Lomentospora prolificans: influence of growth conditions and antifungal susceptilibility profiles. Mem Inst Oswaldo Cruz 111(7):484–494. CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Mello TP, Oliveira SSC, Frasés S, Branquinha MH, Santos ALS (2018) Surface properties, adhesion and biofilm formation on different surfaces by Scedosporium spp. and Lomentospora prolificans. Biofouling 34:800–814. CrossRefPubMedGoogle Scholar
  19. 19.
    Nevalainen H, Kaur J, Han Z, Kautto L, Rampserger M, Meywer W, Chen SCA (2018) Biological, biochemical and molecular aspects of Scedosporium aurantiacum, a primary and opportunistic fungal pathogen. Fungal Biol Rev 32:156–165. CrossRefGoogle Scholar
  20. 20.
    Kaur J, Kautto L, Penesyan A, Meyer W, Elbourne LDH, Paulsen IT, Nevalainen H (2019) Interactions of an emerging fungal pathogen Scedosporium aurantiacum with human lung epithelial cells. Sci Rep 9:5035. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lopes-Bezerra LM, Filler SG (2004) Interactions of Aspergillus fumigatus with endothelial cells: internalization, injury, and stimulation of tissue factor activity. Blood 103:2143–2149. CrossRefPubMedGoogle Scholar
  22. 22.
    Kalleda N, Amich J, Arslan B (2016) Dynamic immune cell recruitment after murine pulmonary Aspergillus fumigatus infection under different immunosuppressive regimens. Front Microbiol. 7:1107. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Osherov N, May GS (2001) The molecular mechanisms of conidial germination. FEMS Microbiol Lett. 199:153–160. CrossRefPubMedGoogle Scholar
  24. 24.
    Kamai Y, Lossinsky AS, Liu H, Sheppard DC, Filler SG (2009) Polarized response of endothelial cells to invasion by Aspergillus fumigatus. Cell Microbiol 11:170–182. CrossRefPubMedGoogle Scholar
  25. 25.
    Proud D, Leigh R (2011) Epithelial cells and airway disease. Immunol Rev 242:186–204. CrossRefPubMedGoogle Scholar
  26. 26.
    Chen F, Zhang C, Jia X, Wang S, Chen Y, Zhao J, Tian S, Han X, Han L (2015) Transcriptome profiles of human lung epithelial cells A549 interacting with Aspergillus fumiagtus by RNA-Seq. PLoS One 10:e0135720. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G (1976) A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17:62–70. CrossRefPubMedGoogle Scholar
  28. 28.
    Madan T, Eggleton P, Kishore U, Strong P, Aggrawal SS, Sarma PU, Reid KB (1997) Binding of pulmonary surfactant proteins A and D to Aspergillus fumigatus conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages. Infect. Immunol 65:3171–3179Google Scholar
  29. 29.
    DeHart DJ, Agwu DE, Julian NC, Washburn RG (1997) Binding and germination of Aspergillus fumigatus conidia on cultured A549 pneumocytes. J Infetc Diseas 175:146–150. CrossRefGoogle Scholar
  30. 30.
    Kogan TV, Jadoun J, Mittelman L, Hirschberg K, Osherov N (2004) Involvement of secreted Aspergillus fumigatus proteases in disruption of the actin fiber cytoskeleton and loss of focal adhesion sites in infected A549 lung pneumocytes. J Infect Dis 189:1965–1973. CrossRefPubMedGoogle Scholar
  31. 31.
    Han Z, Kautto L, Meyer W, Chen SC, Nevalainen H (2019) Effect of protease secreted by the opportunistic pathogen Scedosporium aurantiacum on human epithelial cells. Can J Microbiol Epub ahead of print. CrossRefGoogle Scholar
  32. 32.
    Larcher G, Cimon B, Symoens F, Tronchin G, Chabasse D, Bouchara JP (1996) A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem J 315:119–126. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mello TP, Aor AC, Gonçalves DS, Seabra SH, Branquinha MH, Santos ALS (2016) Assessment of biofilm formation by Scedosporium apiospermum, Scedosporium aurantiacum, Scedosporium minutisporum and Lomentospora prolificans. Biofouling 32:737–749. CrossRefPubMedGoogle Scholar
  34. 34.
    Croft CA, Culibrk L, Moore MM, Tebbutt SJ (2016) Interactions of Aspergillus fumigatus conidia with airway epithelial cells: a critical review. Front Microbiol 7:472. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  1. 1.Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Programa de Pós-Graduação em Bioquímica, Instituto de QuímicaUFRJRio de JaneiroBrazil

Personalised recommendations