Technological properties of Lactococcus lactis subsp. lactis bv. diacetylactis obtained from dairy and non-dairy niches

  • Andressa Fusieger
  • Mayra Carla Freitas Martins
  • Rosângela de Freitas
  • Luís Augusto NeroEmail author
  • Antônio Fernandes de CarvalhoEmail author
Food Microbiology - Research Paper


Lactococcus lactis subsp. lactis bv. diacetylactis strains are often used as starter cultures by the dairy industry due to their production of acetoin and diacetyl, important substances that add buttery flavor notes in dairy products. Twenty-three L. lactis subsp. lactis isolates were obtained from dairy products (milk and cheese) and dairy farms (silage), identified at a biovar level, fingerprinted by rep-PCR and characterized for some technological features. Fifteen isolates presented molecular and phenotypical (diacetyl and citrate) characteristics coherent with L. lactis subsp. lactis bv. diacetylactis and rep-PCR allowed the identification of 12 distinct profiles (minimum similarity of 90%). Based on technological features, only two isolates were not able to coagulate skim milk and 10 were able to produce proteases. All isolates were able to acidify skim milk: two isolates, in special, presented high acidifying ability due to their ability in reducing more than two pH units after 24 h. All isolates were also able to grow at different NaCl concentrations (0 to 10%, w/v), and isolates obtained from peanut and grass silages presented the highest NaCl tolerance (10%, w/v). These results indicate that the L. lactis subsp. lactis bv. diacetylactis isolates presented interesting technological features for potential application in fermented foods production. Despite presenting promising technological features, the isolates must be assessed according to their safety before being considered as starter cultures.


Lactic acid bacteria Diacetyl Starter culture Technological potential 


Funding information

CNPq, CAPES (financial code 001), FAPEMIG, and CIRM-BIA for the concession of reference strains.


  1. 1.
    Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28(4):281–370. CrossRefPubMedGoogle Scholar
  2. 2.
    Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15(2):67–78. CrossRefGoogle Scholar
  3. 3.
    Schleifer KH, Kraus J, Dvorak C, Kilpper-Bälz R, Collins MD, Fischer W (1985) Transfer of Streptococcus lactis and related Streptococci to the genus Lactococcus gen. nov. Syst Appl Microbiol 6(3):183–195. CrossRefGoogle Scholar
  4. 4.
    Nomura M, Kobayashi M, Narita T, Kimoto-Nira H, Okamoto T (2006) Phenotypic and molecular characterization of Lactococcus lactis from milk and plants. J Appl Microbiol 101(2):396–405. CrossRefPubMedGoogle Scholar
  5. 5.
    Dal Bello B, Cocolin L, Zeppa G, Field D, Cotter PD, Hill C (2012) Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. Int J Food Microbiol 153(1–2):58–65. CrossRefPubMedGoogle Scholar
  6. 6.
    Laroute V, Tormo H, Couderc C, Mercier-Bonin M, Le Bourgeois P, Cocaign-Bousquet M, Daveran-Mingot ML (2017) From genome to phenotype: an integrative approach to evaluate the biodiversity of Lactococcus lactis. Microorganisms 5(2):27. CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kempler GM, McKay LL (1981) Biochemistry and genetics of citrate utilization in Streptococcus lactis ssp. diacetylactis. J Dairy Sci 64(7):1527–1539. CrossRefGoogle Scholar
  8. 8.
    García-Quintáns N, Repizo G, Martín M, Magni C, López P (2008) Activation of the diacetyl/acetoin pathway in Lactococcus lactis subsp. lactis bv. diacetylactis CRL264 by acidic growth. Appl Environ Microbiol 74(7):1988–1996. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Curioni PMG, Bosset JO (2002) Key odorants in various cheese types as determined by gas chromatography-olfactometry. Int Dairy J 12(12):959–984. CrossRefGoogle Scholar
  10. 10.
    Urbach G (1997) The flavour of milk and dairy products: II. Cheese: Contribution of volatile compounds. Int J Dairy Technol 50(3):79–89. CrossRefGoogle Scholar
  11. 11.
    Smit G, Smit BA, Engels WJM (2005) Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 29(3 SPEC. ISS):591–610. CrossRefPubMedGoogle Scholar
  12. 12.
    Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16(9):1058–1071. CrossRefGoogle Scholar
  13. 13.
    Cotter PD, Ross RP, Hill C (2013) Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95–105. CrossRefPubMedGoogle Scholar
  14. 14.
    Delorme C, Godon JJ, Ehrlich SD, Renault P (1994) Mosaic structure of large regions of the Lactococcus lactis subsp. cremoris chromosome. Microbiology 140(11):3053–3060. CrossRefPubMedGoogle Scholar
  15. 15.
    Beimfohr C, Ludwig W, Schleifer KH (1997) Rapid genotypic differentiation of Lactococcus lactis subspecies and biovar. Syst Appl Microbiol 20(2):216–221. CrossRefGoogle Scholar
  16. 16.
    Passerini D, Laroute V, Coddeville M, Le Bourgeois P, Loubière P, Ritzenthaler P, Cocaign-Bousquet M, Daveran-Mingot M-L (2013) New insights into Lactococcus lactis diacetyl- and acetoin-producing strains isolated from diverse origins. Int J Food Microbiol 160(3):329–336. CrossRefPubMedGoogle Scholar
  17. 17.
    Pu Z, Dobos M, Limsowtin G (2002) Integrated polymerase chain reaction-based procedures for the detection and identification of species and subspecies of the Gram-positive bacterial genus. J Appl :353–361.Google Scholar
  18. 18.
    Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kempler GM, McKay LL (1980) Improved medium for detection of citrate-fermenting Streptococcus lactis subsp. diacetylactis. Appl Environ Microbiol 39(4):926–927PubMedPubMedCentralGoogle Scholar
  20. 20.
    Franciosi E, Settanni L, Cavazza A, Poznanski E (2009) Biodiversity and technological potential of wild lactic acid bacteria from raw cows’ milk. Int Dairy J 19(1):3–11. CrossRefGoogle Scholar
  21. 21.
    Dal Bello B, Rantsiou K, Bellio A, Zeppa G, Ambrosoli R, Civera T, Cocolin L (2010) Microbial ecology of artisanal products from North West of Italy and antimicrobial activity of the autochthonous populations. LWT Food Sci Technol 43(7):1151–1159. CrossRefGoogle Scholar
  22. 22.
    Alves MP, Salgado RL, Eller MR, Vidigal PMP, Fernandes de Carvalho A (2016) Characterization of a heat-resistant extracellular protease from Pseudomonas fluorescens 07A shows that low temperature treatments are more effective in deactivating its proteolytic activity. J Dairy Sci 99(10):7842–7851. CrossRefPubMedGoogle Scholar
  23. 23.
    Adams DM, Barach JT, Speck ML (1976) Effect of psychrotrophic bacteria from raw milk on milk proteins and stability of milk proteins to ultrahigh temperature treatment. J Dairy Sci 59(5):823–827. CrossRefPubMedGoogle Scholar
  24. 24.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  25. 25.
    Psoni L, Kotzamanidis C, Yiangou M, Tzanetakis N, Litopoulou-Tzanetaki E (2007) Genotypic and phenotypic diversity of Lactococcus lactis isolates from Batzos, a Greek PDO raw goat milk cheese. Int J Food Microbiol 114(2):211–220. CrossRefPubMedGoogle Scholar
  26. 26.
    Kahala M, Mäki M, Lehtovaara A, Tapanainen JM, Katiska R, Juuruskorpi M, Juhola J, Joutsjoki V (2008) Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili. J Appl Microbiol 105(6):1929–1938. CrossRefPubMedGoogle Scholar
  27. 27.
    Cavanagh D, Casey A, Altermann E, Cotter PD, Fitzgerald GF, McAuliffe O (2015) Evaluation of Lactococcus lactis isolates from nondairy sources with potential dairy applications reveals extensive phenotype-genotype disparity and implications for a revised species. Appl Environ Microbiol 81(12):3961–3972. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Siezen RJ, Bayjanov JR, Felis GE, van der Sijde MR, Starrenburg M, Molenaar D, Wels M, van Hijum SAFT, van Hylckama Vlieg JET (2011) Genome-scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi-strain arrays. Microb Biotechnol 4(3):383–402. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Domingos-Lopes MFP, Stanton C, Ross PR, Dapkevicius MLE, Silva CCG (2017) Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. Food Microbiol 63:178–190. CrossRefPubMedGoogle Scholar
  30. 30.
    Perin LM, Belviso S, Dal Bello B, Nero LA, Cocolin L (2017) Technological properties and biogenic amines production by bacteriocinogenic Lactococci and Enterococci strains isolated from raw goat’s milk. J Food Prot 80(1):151–157. CrossRefPubMedGoogle Scholar
  31. 31.
    Starrenburg M, Hugenholtz J (1991) Citrate fermentation by Lactococcus and Leuconostoc spp. Metab Clin Exp 57(12):3535–3540Google Scholar
  32. 32.
    Lucey JA, Johnson ME, Horne DS (2003) Invited review: perspectives on the basis of the rheology and texture properties of cheese. J Dairy Sci 86(9):2725–2743. CrossRefPubMedGoogle Scholar
  33. 33.
    Piraino P, Zotta T, Ricciardi A, McSweeney PLH, Parente E (2008) Acid production, proteolysis, autolytic and inhibitory properties of lactic acid bacteria isolated from pasta filata cheeses: a multivariate screening study. Int Dairy J 18(1):81–92. CrossRefGoogle Scholar
  34. 34.
    Herreros MA, Fresno JM, González Prieto MJ, Tornadijo ME (2003) Technological characterization of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). Int Dairy J 13(6):469–479. CrossRefGoogle Scholar
  35. 35.
    Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ (2010) The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 11(1):5–8. CrossRefGoogle Scholar
  36. 36.
    Tulini FL, Hymery N, Haertlé T, Le Blay G, De Martinis ECP (2016) Screening for antimicrobial and proteolytic activities of lactic acid bacteria isolated from cow, buffalo and goat milk and cheeses marketed in the southeast region of Brazil. J Dairy Res 83(1):115–124. CrossRefPubMedGoogle Scholar
  37. 37.
    Visser S (1993) Proteolytic enzymes and their relation to cheese ripening and flavor: an overview. J Dairy Sci 76(1):329–350. CrossRefGoogle Scholar
  38. 38.
    González L, Sacristán N, Arenas R, Fresno JM, Eugenia Tornadijo M (2010) Enzymatic activity of lactic acid bacteria (with antimicrobial properties) isolated from a traditional Spanish cheese. Food Microbiol 27(5):592–597. CrossRefPubMedGoogle Scholar
  39. 39.
    Morandi S, Brasca M, Lodi R (2011) Technological, phenotypic and genotypic characterisation of wild lactic acid bacteria involved in the production of Bitto PDO Italian cheese. Dairy Sci Technol 91(3):341–359. CrossRefGoogle Scholar
  40. 40.
    Zuljan FA, Mortera P, Alarcón SH, Blancato VS, Espariz M, Magni C (2016) Lactic acid bacteria decarboxylation reactions in cheese. Int Dairy J 62:53–62. CrossRefGoogle Scholar
  41. 41.
    Wouters JTM, Ayad EHE, Hugenholtz J, Smit G (2002) Microbes from raw milk for fermented dairy products. Int Dairy J 12(2–3):91–109. CrossRefGoogle Scholar
  42. 42.
    Deveau H, Labrie SJ, Chopin MC, Moineau S (2006) Biodiversity and classification of lactococcal phages. Appl Environ Microbiol 72(6):4338–4346. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mahony J, Murphy J, Van Sinderen D (2012) Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Front Microbiol 3(SEP):1–9. CrossRefGoogle Scholar
  44. 44.
    Perin LM, Miranda RO, Todorov SD, Franco BDG d M, Nero LA (2014) Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. Int J Food Microbiol 185:121–126. CrossRefPubMedGoogle Scholar
  45. 45.
    Lemay ML, Tremblay DM, Moineau S (2017) Genome engineering of virulent Lactococcal phages using CRISPR-Cas9. ACS Synth Biol 6(7):1351–1358. CrossRefPubMedGoogle Scholar
  46. 46.
    Devirgiliis C, Zinno P, Perozzi G (2013) Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front Microbiol 4:1–13. CrossRefGoogle Scholar
  47. 47.
    Buňková L, Buňka F, Hlobilová M, Vaňátková Z, Nováková D, Dráb V (2009) Tyramine production of technological important strains of Lactobacillus, Lactococcus and Streptococcus. Eur Food Res Technol 229(3):533–538. CrossRefGoogle Scholar
  48. 48.
    Flasarová R, Pachlová V, Buňková L, Menšíková A, Georgová N, Dráb V, Buňka F (2016) Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese. Food Chem 194:68–75. CrossRefPubMedGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  1. 1.Departamento de Tecnologia de AlimentosUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Departamento de VeterináriaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations