Advertisement

Prevalence of PspA families and pilus islets among Streptococcus pneumoniae colonizing children before and after universal use of pneumococcal conjugate vaccines in Brazil

  • Patricia Alice Knupp-Pereira
  • Nayara Torres Cardoso Marques
  • Lúcia Martins Teixeira
  • Helvécio Cardoso Corrêa Póvoa
  • Felipe Piedade Gonçalves NevesEmail author
Bacterial and Fungal Pathogenesis - Research Paper
  • 4 Downloads

Abstract

In 2010, the 10-valent (PCV10) and 13-valent (PCV13) pneumococcal conjugate vaccines were introduced in Brazil to immunize children, resulting in serotype replacement. We analyzed 253 carriage isolates recovered from children aged <6 years in Brazil, including 124 and 129 isolates from the pre-PCV10/13 (December 2009–July 2010) and post-PCV10/13 (September–December 2014) periods, respectively, to investigate the prevalence of PspA families and pilus islets, potential vaccine candidates. Serotypes and resistance profiles were previously characterized. We used PCR to type PspA families (Fam1-3) and pilus islets (PI-1 and PI-2). We identified the PspA family of 130 (51.4%) isolates. PspA families 1, 2, and 3 were identified in 12.2%, 38.7%, and 0.4% of the isolates, respectively. Eighteen (58.1%) Fam1 isolates were serogroup 6. Nine (81.8%) of 11 serotype 14 isolates were Fam2. Fam1 isolates resistant to penicillin (50%), erythromycin (43.7%), clindamycin (31.2%), and chloramphenicol (6.2%) were only found after PCV10/13 introduction. Resistance among Fam2 isolates was higher in the post-PCV10/13 period to erythromycin (1.8% vs. 18.6%), clindamycin (0 vs. 13.9%), and tetracycline (10.9% vs. 16.3%). PI-I was detected in 42 (16.6%) isolates. Fourteen (56%) of 25 serotype 15B/C and nine (81.8%) of 11 serotype 14 isolates had PI-1 (p < 0.01). Eight (3.2%) isolates had PI-2, and six (75%) were serogroup 19. Five (2%) serogroup 19 isolates had both PI-1 and PI-2. We found associations between serogroups/serotypes, PspA families, and pilus islets, but distribution of PspA families and pilus islets was similar in both periods. After universal vaccination, we observed higher antimicrobial resistance frequencies, regardless PspA or pilus types.

Keywords

Streptococcus pneumoniae PspA Pilus Vaccine 

Notes

Acknowledgments

The authors thank all healthcare institutions and professionals that contributed to this study, especially Dr. Carlos Campbell and Dr. Paulo Monnerat.

Financial information

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) via Science without Borders program (grant number 234873/2014-0); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)–Finance Code 001; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)–grant number E-26/203.164/2017; and Pró-Reitoria de Pesquisa, Pós-Graduação e Inovação da Universidade Federal Fluminense (PROPPi/UFF).

Compliance with ethical standards

This study was approved by the Ethics Committee of the Universidade Federal Fluminense (CAAE 26823614.2.0000.5243 and CAAE 26823614.2.0000.5243).

Conflict of interests

The authors declare that they have no conflict of interests.

References

  1. 1.
    Lynch J, Zhanel G (2009) Streptococcus pneumoniae: epidemiology, risk factors, and strategies for prevention. Semin Respir Crit Care Med 30(2):189–209.  https://doi.org/10.1055/s-0029-1202938 CrossRefPubMedGoogle Scholar
  2. 2.
    Wang H, Naghavi M, Allen C et al (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1459–1544.  https://doi.org/10.1016/S0140-6736(16)31012-1 CrossRefGoogle Scholar
  3. 3.
    Corrêa RA, José BPS, Malta DC, Passos VMA, França EB, Teixeira RA, Camargos PAM (2017) Carga de doença por infecções do trato respiratório inferior no Brasil, 1990 a 2015: estimativas do estudo Global Burden of Disease 2015. Rev Bras Epidemiol 20(suppl 1):171–181.  https://doi.org/10.1590/1980-5497201700050014 CrossRefGoogle Scholar
  4. 4.
    Ministério da Saúde (2019) Portal da Saúde, Tabela de casos confirmados, óbitos, incidência e letalidade por tipo de meningite de 2010 a 2018. Publishing Brazilian Ministry of Health. http://portalarquivos2.saude.gov.br/images/pdf/2019/abril/25/tabela-dados-2010-2018-site.pdf. Accessed 29 Apr 2019
  5. 5.
    Feldman C, Anderson R (2014) Review: current and new generation pneumococcal vaccines. J Inf 69(4):309–325.  https://doi.org/10.1016/j.jinf.2014.06.006 CrossRefGoogle Scholar
  6. 6.
    Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, Konradsen HB, Nahm MH (2015) Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev 28(3):871–899.  https://doi.org/10.1128/CMR.00024-15 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Westerink MA, Schroeder HW Jr, Nahm MH (2012) Immune responses to pneumococcal vaccines in children and adults: rationale for age-specific vaccination. Aging Dis 3(1):51–67PubMedGoogle Scholar
  8. 8.
    Weinberger DM, Malley R, Lipsitch M (2011) Serotype replacement in disease after pneumococcal vaccination. Lancet 378(9807):1962–1973.  https://doi.org/10.1016/S0140-6736(10)62225-8 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ogunniyi AD, Grabowicz M, Briles DE, Cook J, Paton JC (2006) Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infect Immun 75(1):350–357.  https://doi.org/10.1128/IAI.01103-06 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Qian J, Yao K, Xue L, Xie G, Zheng Y, Wang C, Shang Y, Wang H, Wan L, Liu L, Li C, Ji W, Wang Y, Xu P, Yu S, Tang Y-W, Yang Y (2012) Diversity of pneumococcal surface protein A (PspA) and relation to sequence typing in Streptococcus pneumoniae causing invasive disease in Chinese children. Eur J Clin Microbiol Infect Dis 31(3):217–223.  https://doi.org/10.1007/s10096-011-1296-9 CrossRefPubMedGoogle Scholar
  11. 11.
    Bagnoli F, Moschioni M, Donati C, Dimitrovska V, Ferlenghi I, Facciotti C, Muzzi A, Giusti F, Emolo C, Sinisi A, Hilleringmann M, Pansegrau W, Censini S, Rappuoli R, Covacci A, Masignani V, Barocchi MA (2008) A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol 190(15):5480–5492.  https://doi.org/10.1128/JB.00384-08 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hollingshead SK, Becker R, Briles DE (2000) Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect Immun 68(10):5889–5900.  https://doi.org/10.1128/iai.68.10.5889-5900.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Daniels CC, Coan P, King J, Hale J, Benton KA, Briles DE, Hollingshead SK (2010) The proline-rich region of pneumococcal surface proteins A and C contains surface-accessible epitopes common to all pneumococci and elicits antibody-mediated protection against sepsis. Infect Immun 78(5):2163–2172.  https://doi.org/10.1128/IAI.01199-09 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schachern PA, Tsuprun V, Goetz S, Cureoglu S, Juhn SK, Briles DE, Paparella MM, Ferrieri P (2013) Viability and virulence of pneumolysin, pneumococcal surface protein A, and pneumolysin/pneumococcal surface protein A mutants in the ear. JAMA Otolaryngol Head Neck Surg 139(9):937–943.  https://doi.org/10.1001/jamaoto.2013.4104 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Neves FPG, Pinto TC, Corrêa MA, Barreto RA, Moreira LSG, Rodrigues HG, Cardoso CA, Barros RR, Teixeira LM (2013) Nasopharyngeal carriage, serotype distribution and antimicrobial resistance of Streptococcus pneumoniae among children from Brazil before the introduction of the 10-valent conjugate vaccine. BMC Infect Dis 13(1):318–324.  https://doi.org/10.1186/1471-2334-13-318 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Neves FPG, Cardoso NT, Snyder RE, Marlow MA, Cardoso CAA, Teixeira LM, Riley LW (2017) Pneumococcal carriage among children after four years of routine 10-valent pneumococcal conjugate vaccine use in Brazil: the emergence of multidrug resistant serotype 6C. Vaccine. 35(21):2794–2800.  https://doi.org/10.1016/j.vaccine.2017.04.019 CrossRefPubMedGoogle Scholar
  17. 17.
    Rodrigues HG, Pinto TCA, Barros RR, Teixeira LM, Neves FPG (2017) Pneumococcal nasopharyngeal carriage among children in Brazil prior to the introduction of the 10-valent conjugate vaccine: a culture- and PCR-based survey. Epidemiol Infect 145(8):1720–1726.  https://doi.org/10.1017/S0950268817000449 CrossRefPubMedGoogle Scholar
  18. 18.
    Swiatlo E, Brooks-Walter A, Briles DE, McDaniel LS (1997) Oligonucleotides identify conserved and variable regions of pspA and pspA-like sequences of Streptococcus pneumoniae. Gene 188(2):279–284.  https://doi.org/10.1016/s0378-1119(96)00823-2 CrossRefPubMedGoogle Scholar
  19. 19.
    Vela Coral MC, Fonseca N, Castañeda E, Di Fabio JL, Hollingshead SK, Briles DE (2001) Pneumococcal surface protein A of invasive Streptococcus pneumoniae isolates from Colombian children. Emerg Infect Dis 7(5):832–836.  https://doi.org/10.3201/eid0705.017510 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hollingshead SK, Baril L, Ferro S, King J, Coan P, Briles DE, Pneumococcal Proteins Epi Study Group (2006) Pneumococcal surface protein A (PspA) family distribution among clinical isolates from adults over 50 years of age collected in seven countries. J Med Microbiol 55(2):215–221.  https://doi.org/10.1099/jmm.0.46268-0 CrossRefPubMedGoogle Scholar
  21. 21.
    Basset A, Trzcinski K, Hermos C, O’Brien KL, Reid R, Santosham M, McAdam AJ, Lipsitch M, Malley R (2007) Association of the pneumococcal pilus with certain capsular serotypes but not with increased virulence. J Clin Microbiol 45(6):1684–1689.  https://doi.org/10.1128/JCM.00265-07 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zähner D, Gudlavalleti A, Stephens DS (2010) Increase in pilus islet 2-encoded pili among Streptococcus pneumoniae isolates, Atlanta, Georgia, USA. Emerg Infect Dis 16(6):955–962.  https://doi.org/10.3201/eid1606.091820 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pimenta FC, Dias FR, Brandileone MCC, Miyaji EN, Leite LCC, Andrade ALSS (2006) Genetic diversity of PspA types among nasopharyngeal isolates collected during an ongoing surveillance study of children in Brazil. J Clin Microbiol 44(8):2838–2843.  https://doi.org/10.1128/JCM.00156-06 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Khan F, Khan MA, Ahmed N, Khan MI, Bashir H, Tahir S, Zafar AU (2018) Molecular characterization of pneumococcal surface protein A (PspA), serotype distribution and antibiotic susceptibility of Streptococcus pneumoniae strains isolated from Pakistan. Infect Dis Ther 7(2):277–289.  https://doi.org/10.1007/s40121-018-0195-0 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brandileone M-CC, Zanella RC, Almeida SCG, Brandao AP, Ribeiro AF, Carvalhanas T-RMP, Sato H, Andrade A-L, Verani JR (2016) Effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae and Haemophilus influenzae among children in São Paulo, Brazil. Vaccine 34(46):5604–5611.  https://doi.org/10.1016/j.vaccine.2016.09.027 CrossRefPubMedGoogle Scholar
  26. 26.
    Organização Panamericana de Saúde (OPAS) (2016) Informe regional de SIREVA II, 2014: datos por país y por grupos de edad sobre las características de los aislamientos de Streptococcus pneumoniae, Haemophilus influenzae y Neisseria meningitidis, en procesos invasivos bacterianos. Publishing OPAS. http://iris.paho.org/xmlui/handle/123456789/33875. Accessed 23 Jul 2019.
  27. 27.
    Cooper D, Yu X, Sidhu M, Nahm MH, Fernsten P, Jansen KU (2011) The 13-valent pneumococcal conjugate vaccine (PCV13) elicits cross-functional opsonophagocytic killing responses in humans to Streptococcus pneumoniae serotypes 6C and 7A. Vaccine 29(41):7207–7211.  https://doi.org/10.1016/j.vaccine.2011.06.056 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kawaguchiya M, Urushibara N, Aung MS, Morimoto S, Ito M, Kudo K, Sumi A, Kobayashi N (2015) Emerging non-PCV13 serotypes of noninvasive Streptococcus pneumoniae with macrolide resistance genes in northern Japan. New Microbe New Infect 9:66–72.  https://doi.org/10.1016/j.nmni.2015.11.001 CrossRefGoogle Scholar
  29. 29.
    Brandileone MCC, Andrade ALSS, Teles EM, Zanella RC, Yara TI, Di Fabio JL (2004) Typing of pneumococcal surface protein A (PspA) in Streptococcus pneumoniae isolated during epidemiological surveillance in Brazil: towards novel pneumococcal protein vaccines. Vaccine 22(29-30):3890–3896.  https://doi.org/10.1016/j.vaccine.2004.04.009 CrossRefPubMedGoogle Scholar
  30. 30.
    Horácio NA, Silva-Costa C, Diamantino-Miranda J, Lopes JP, Ramirez M, Melo-Cristino J, Portuguese Group for the Study of Streptococcal Infections (2016) Population structure of Streptococcus pneumoniae causing invasive disease in adults in Portugal before PCV13 availability for adults: 2008-2011. PLoS One 11(5):e0153602.  https://doi.org/10.1371/journal.pone.0153602 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cassiolato AP, Almeida SCG, Andrade AL, Minamisava R, Brandileone MCC (2018) Expansion of the clonal multidrug-resistant complex 320 among invasive Streptococcus pneumoniae serotype 19A after the introduction of a ten-valent pneumococcal conjugate vaccine in Brazil. PLoS One 13(11):e0208211.  https://doi.org/10.1371/journal.pone.0208211 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cho EY, Kang HM, Lee J, Kang JH, Choi EH, Lee HJ (2012) Changes in serotype distribution and antibiotic resistance of nasopharyngeal isolates of Streptococcus pneumoniae from children in Korea, after optional use of the 7-Valent conjugate vaccine. J Korean Med Sci 27(7):716–722.  https://doi.org/10.3346/jkms.2012.27.7.716 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Isaacman DJ, McIntosh ED, Reinert RR (2010) Burden of invasive pneumococcal disease and serotype distribution among Streptococcus pneumoniae isolates in young children in Europe: impact of the 7-valent pneumococcal conjugate vaccine and considerations for future conjugate vaccines. Int J Infect Dis 14(3):e197–e209.  https://doi.org/10.1016/j.ijid.2009.05.010 CrossRefPubMedGoogle Scholar
  34. 34.
    Moschioni M, De Angelis G, Melchiorre S, Masignani V, Leibovitz E, Barocchi MA, Dagan R (2010) Prevalence of pilus-encoding islets among acute otitis media Streptococcus pneumoniae isolates from Israel. Clin Microbiol Infect 16(9):1501–1504.  https://doi.org/10.1111/j.1469-0691.2009.03105.x CrossRefPubMedGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Patricia Alice Knupp-Pereira
    • 1
    • 2
  • Nayara Torres Cardoso Marques
    • 2
  • Lúcia Martins Teixeira
    • 3
  • Helvécio Cardoso Corrêa Póvoa
    • 1
  • Felipe Piedade Gonçalves Neves
    • 2
    Email author
  1. 1.Instituto de Saúde de Nova FriburgoUniversidade Federal FluminenseNova FriburgoBrazil
  2. 2.Instituto BiomédicoUniversidade Federal FluminenseNiteróiBrazil
  3. 3.Instituto de MicrobiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations