Advertisement

Brazilian Journal of Microbiology

, Volume 50, Issue 4, pp 1115–1124 | Cite as

A common vaginal microbiota composition among breeds of Bos taurus indicus (Gyr and Nellore)

  • Silvia Giannattasio-Ferraz
  • Mateus Laguardia-Nascimento
  • Marcela Ribeiro Gasparini
  • Laura Rabelo Leite
  • Flávio Marcos Gomes Araujo
  • Anna Christina de Matos Salim
  • André Penido de Oliveira
  • Jacques Robert Nicoli
  • Guilherme Corrêa de Oliveira
  • Flavio Guimarães da Fonseca
  • Edel Figueiredo Barbosa-StancioliEmail author
Veterinary Microbiology - Research Paper

Abstract

Describing the bovine vaginal microbiota is essential to better understand its physiology and its impact on health maintenance. Despite the economic importance of reproduction of these animals, bovine vaginal microbial community is still poorly described in comparison with rumen microbiome. Previous studies of our group described the vaginal microbiota of Nellore, an important Bos taurus indicus breed, using metagenomics. In order to better understand this microbiota, the present work aims to investigate another important breed, Gyr. Results have shown bacterial dominance over Archaea and Fungi was observed, with the most abundant bacterial phylum (Firmicutes) representing 40–50% of bacterial population, followed by Bacteroidetes, Proteobacteria, and Actinobacteria. The Fungi kingdom had the Mycosphaerella genus as its main representative, followed by Cladosporium. Archaea were observed at a very low abundance in all animals, with a high relative abundance of Methanobrevibacter genus. These results demonstrate a high microbial diversity on vaginal tract of Gyr, as demonstrated for Nellore and different from the previously described for other species. Our results indicate a great similarity between vaginal microbiota of Nellore and Gyr despite the differences in animal handling and genetic improvement. As observed for both breeds, individual variation is the largest source of microbial diversity between animals.

Keywords

Microbiota Metagenomics Bovine Gyr Vaginal tract 

Notes

Acknowledgments

The study was supported by grants from the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author contributions

Conceived and designed the experiments: SGF, MLN, JRN, GCO and EFBS. Performed the experiments: SGF, MLN, MRG, FMGA, ACMS and APO. Analyzed the data: SGF, MLN and LRL. Contributed reagents/materials/analysis tools: JRN, GCO, FGF and EFBS. Wrote the paper: SGF, MLN, JRN, GCO, FGF and EFBS. All authors reviewed the manuscript.

Funding

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant ID 473879/2013-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in studies involving animals were in accordance with the ethical standards of Ethics Committee in Animal Experimentation of the Universidade Federal de Minas Gerais, Brazil (CETEA/UFMG - 95/2012) at which the studies were conducted.

References

  1. 1.
    Garoussi MT, Eidi S, Mehravaran M (2016) Isolation and comparative investigation of vaginal mycoflora in feline population of urban and dairy cattle herds. J M Mycol 26:22–27.  https://doi.org/10.1016/j.mycmed.2015.10.013 CrossRefGoogle Scholar
  2. 2.
    Loaces I, Amarelle V, Muñoz-Gutierrez I, Fabiano E, Martinez A, Noya F (2015) Improved ethanol production from biomass by a rumen metagenomic DNA fragment expressed in Escherichia coli MS04 during fermentation. Appl Microbiol Biotechnol 99:9049–9060.  https://doi.org/10.1007/s00253-015-6801-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Roehe R, Dewhurst RJ, Duthie CA, Rooke JA, McKain N, Ross DW, Hyslop JJ, Waterhouse A, Freeman TC, Watson M, Wallace RJ (2016) Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genet 12:e1005846.  https://doi.org/10.1371/journal.pgen.1005846 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wallace RJ, Snelling TJ, McCartney CA, Tapio I, Strozzi F (2017) Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism. Genet Sel Evol 49:9.  https://doi.org/10.1186/s12711-017-0285-6 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Laguardia-Nascimento M, Branco KMGR, Gasparini MR, Giannattasio-Ferraz S, Leite LR, Araujo FMG, Salim ACM, Nicoli JR, de Oliveira GC, Barbosa-Stancioli EF (2015) Vaginal microbiome characterization of Nellore cattle using metagenomic analysis. PLoS One 10:e0143294.  https://doi.org/10.1371/journal.pone.0143294 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bicalho ML, Santin T, Rodrigues MX, Marques CE, Lima SF, Bicalho RC (2017) Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: associations with uterine diseases and reproductive outcome. J Dairy Sci 100:3043–3058.  https://doi.org/10.3168/jds.2016-11623 CrossRefPubMedGoogle Scholar
  7. 7.
    Gonzalez-Moreno C, Fontana C, Cocconcelli PS, Callegari ML, Otero MC (2016) Vaginal microbial communities from synchronized heifers and cows with reproductive disorders. J Appl Microbiol 121:1232–1241.  https://doi.org/10.1111/jam.13239 CrossRefPubMedGoogle Scholar
  8. 8.
    Zinicola M, Lima F, Lima S, Machado V, Gomez M, Döpfer D, Guard C, Bicalho R (2015) Altered microbiomes in bovine digital dermatitis lesions, and the gut as a pathogen reservoir. PLoS One 10:e0120504.  https://doi.org/10.1371/journal.pone.0120504 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Antonio MA, Hawes SE, Hillier SL (1999) The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis 180:1950–1956.  https://doi.org/10.1086/315109 CrossRefPubMedGoogle Scholar
  10. 10.
    Dumonceaux TJ, Schellenberg J, Goleski V, Hill JE, Jaoko W, Kimani J, Money D, Ball TB, Plummer FA, Severini A (2009) Multiplex detection of bacteria associated with normal microbiota and with bacterial vaginosis in vaginal swabs by use of oligonucleotide-coupled fluorescent microspheres. J Clin Microbiol 47:4067–4077.  https://doi.org/10.1128/JCM.00112-09 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Branco KMGR, Nardi RMD, Moreira JLS, Nunes AC, Farias LM, Nicoli JR, Carvalho MAR (2010) Identification and in vitro production of Lactobacillus antagonists from women with or without bacterial vaginosis. Braz J Med Biol Res 43:338–344.  https://doi.org/10.1590/S0100-879X2010007500013 CrossRefPubMedGoogle Scholar
  12. 12.
    Miller EA, Beasley DE, Dunn RR, Archie EA (2016) Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front Microbiol 7.  https://doi.org/10.3389/fmicb.2016.01936
  13. 13.
    Spear GT, Kersh E, Guenthner P, Vishwanathan SA, Gilbert D, Zariffard MR, Mirmonsef P, Landay A, Zheng L, Gillevet P (2012) Longitudinal assessment of pigtailed macaque lower genital tract microbiota by pyrosequencing reveals dissimilarity to the genital microbiota of healthy humans. AIDS Res Hum Retrovir 28:1244–1249.  https://doi.org/10.1089/aid.2011.0382 CrossRefPubMedGoogle Scholar
  14. 14.
    Yildirim S, Yeoman CJ, Janga SC, Thomas SM, Ho M, Leigh SR, Consortium PM, White BA, Wilson BA, Stumpf RM (2014) Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance. ISME J 8:2431–2444.  https://doi.org/10.1038/ismej.2014.90 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Swartz JD, Lachman M, Westveer K, O’Neill T, Geary T, Kott R et al (2014) Characterization of the vaginal microbiota of ewes and cows reveals a unique microbiota with low levels of lactobacilli and near-neutral pH. Front Vet Sci 1.  https://doi.org/10.3389/fvets.2014.00019
  16. 16.
    Herthelius M, Gorbach SL, Mollby R, Nord CE, Pettersson L, Winberg J (1989) Elimination of vaginal colonization with Escherichia coli by administration of indigenous flora. Infect Immun 57:2447–2451PubMedPubMedCentralGoogle Scholar
  17. 17.
    Reid G, Chan RCY, Bruce AW, Costerton JW (1985) Prevention of urinary tract infection in rats with an indigenous Lactobacillus casei strain. Infect Immun 49:320–324PubMedPubMedCentralGoogle Scholar
  18. 18.
    Amin JD, Zaria LT, Malgwi RM (1996) Vaginal aerobic bacterial flora of apparently healthy cattle in various stages of the reproductive cycle in the Sahel region of Nigeria. Bull Anim Heal Prod Africa 44:15–18Google Scholar
  19. 19.
    Otero C, Ruiz CS, Iba R, Wilde OR, Holgado PDR (1999) Lactobacilli and enterococci isolated from the bovine vagina during the estrous cycle. Anaerobe. 5:305–307.  https://doi.org/10.1006/anae.1999.0245 CrossRefGoogle Scholar
  20. 20.
    Otero C, Saavedra L, Silva-De-Ruiz C, Wilde O, Holgado AR, Nader-Macías ME (2000) Vaginal bacterial microflora modifications during the growth of healthy cows. Lett Appl Microbiol 31:251–254.  https://doi.org/10.1046/j.1365-2672.2000.00809.x CrossRefPubMedGoogle Scholar
  21. 21.
    Sharda R, Monghe MN, Tanwani SK (1991) Antibiotic sensitivity pattern of bacteria isolated from repeat breeding animals. Indian Vet J 68:197–200Google Scholar
  22. 22.
    Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3:e2836.  https://doi.org/10.1371/journal.pone.0002836 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Faveri M, Gonçalves LFH, Feres M, Figueiredo LC, Gouveia LA, Shibli JA, Mayer MP (2011) Prevalence and microbiological diversity of archaea in peri-implantitis subjects by 16S ribosomal RNA clonal analysis. J Periodontal Res 46:338–344.  https://doi.org/10.1111/j.1600-0765.2011.01347.x CrossRefPubMedGoogle Scholar
  24. 24.
    Kwiatkowski NP, Babiker WM, Merz WG, Carroll KC, Zhang SX (2012) Evaluation of nucleic acid sequencing of the D1/D2 region of the large subunit of the 28S rDNA and the internal transcribed spacer region using smartgene idn software for identification of filamentous fungi in a clinical laboratory. J Mol Diagnostics 14:393–401.  https://doi.org/10.1016/j.jmoldx.2012.02.004 CrossRefGoogle Scholar
  25. 25.
    Meyer F, Paarmann D, D’Souza M, Oslon R, Kubal M et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9.  https://doi.org/10.1186/1471-2105-9-386
  26. 26.
    Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 30:3123–3124.  https://doi.org/10.1093/bioinformatics/btu494 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang Y, Ametaj BN, Ambrose DJ, Gänzle MG (2013) Characterization of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici. BMC Microbiol 13:19.  https://doi.org/10.1186/1471-2180-13-19 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Verkley JMG, Crous PW, Groenewald JZ, Braun U, Aptroot A (2004) Mycosphaerella punctiformis revisited: morphology, phylogeny, and epitypification of the type species of the genus Mycosphaerella (Dothideales, Ascomycota). Mycol Res 108:1271–1282.  https://doi.org/10.1017/S0953756204001054 CrossRefPubMedGoogle Scholar
  29. 29.
    Dias J, Marcondes MI, Noronha MF, Resende RT, Machado FS, Mantovani HC, Dill-McFarland KA, Suen G (2017) Effect of pre-weaning diet on the ruminal archaeal, bacterial, and fungal communities of dairy calves. Front Microbiol 8.  https://doi.org/10.3389/fmicb.2017.01553
  30. 30.
    Miñana-Galbis D, Pinzón DL, Lorén JG, Manresa A, Oliart-Ros RM (2010) Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. Nov., comb. nov. Int J Syst Evol Microbiol 60:1600–1604.  https://doi.org/10.1099/ijs.0.003699-0 CrossRefPubMedGoogle Scholar
  31. 31.
    Sevim E, Gaballa A, Beldüz AO, Helmann JD (2011) DNA-binding properties of the Bacillus subtilis and Aeribacillus pallidus AC6 σD proteins. J Bacteriol 193:575–579.  https://doi.org/10.1128/JB.01193-10 CrossRefPubMedGoogle Scholar
  32. 32.
    Larsen A, Tao Z, Bullard SA, Arias CR (2013) Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol 85:483–494.  https://doi.org/10.1111/1574-6941.12136 CrossRefPubMedGoogle Scholar
  33. 33.
    Oikonomou G, Bicalho ML, Meira E, Rossi RE, Foditsch C, Machado VS, Teixeira AGV, Santisteban C, Schukken YH, Bicalho RC (2014) Microbiota of Cow’s Milk; distinguishing healthy, sub-clinically and clinically diseased quarters. PLoS One 9.  https://doi.org/10.1371/journal.pone.0085904 CrossRefGoogle Scholar
  34. 34.
    Randhawa IAS, Khatkar MS, Thomson PC, Raadsma HW (2016) A meta-assembly of delection signatures in cattle. PLoS One 11:e0153013.  https://doi.org/10.1371/journal.pone.0153013 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. PNAS. 107:18933–18938.  https://doi.org/10.1073/pnas.1007028107 CrossRefPubMedGoogle Scholar
  36. 36.
    Guatimosim E, Schwartsburd PB, Barreto RW, Crous PW (2017) Novel fungi from an ancient niche: cercosporoid and related sexual morphs on ferns. Persoonia. 37:106–141.  https://doi.org/10.3767/003158516X690934 CrossRefGoogle Scholar
  37. 37.
    Pereira CB, Pereira-de-Sá N, Borelli BM, Rosa CA, Barbeira PJ, Cota BB, Johann S (2016) Antifungal activity of eicosanoic acids isolated from the endophytic fungus Mycosphaerella sp. against Cryptococcus neoformans and C. gattii. Microb Pathog 100:205–212.  https://doi.org/10.1016/j.micpath.2016.09.022 CrossRefPubMedGoogle Scholar
  38. 38.
    Keller LAM, Pereyra CM, Cavaglieri LR, Dalcero AM, Rosa CAR (2012) Fungi and mycotoxins from pre- and poststorage Brewer’s grain intended for bovine intensive rearing. ISRN Vet Sci 2012:1–6.  https://doi.org/10.5402/2012/396590 CrossRefGoogle Scholar
  39. 39.
    Matković K, Vucemilo M, Vinković B (2009) Airborne fungi in dwellings for dairy cows and laying hens. Arh Hig Rada Toksikol 60(4):395–399.  https://doi.org/10.2478/10004-1254-60-2009-1970 CrossRefPubMedGoogle Scholar
  40. 40.
    Belay N, Mukhopadhyay B, Conway-de-Macario E, Galask R, Daniels L (1990) Methanogenic bacteria in human vaginal samples. J Clin Microbiol 28(7):1666–1668PubMedPubMedCentralGoogle Scholar
  41. 41.
    Dridi B, Henry M, El Khéchine A, Raoult D, Drancourt M (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4:e7063.  https://doi.org/10.1371/journal.pone.0007063 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2004) Methanogenic Archaea and human periodontal disease. PNAS. 101:6176–6181.  https://doi.org/10.1073/pnas.0308766101 CrossRefPubMedGoogle Scholar
  43. 43.
    Carberry CA, Kenny DA, Kelly AK, Waters SM (2014) Quantitative analysis of ruminal methanogenic microbial populations in beef cattle divergent in phenotypic residual feed intake (RFI) offered contrasting diets. J Anim Sci Biotechnol 5:41.  https://doi.org/10.1186/2049-1891-5-41 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Silvia Giannattasio-Ferraz
    • 1
  • Mateus Laguardia-Nascimento
    • 1
  • Marcela Ribeiro Gasparini
    • 1
  • Laura Rabelo Leite
    • 2
  • Flávio Marcos Gomes Araujo
    • 2
  • Anna Christina de Matos Salim
    • 2
  • André Penido de Oliveira
    • 3
  • Jacques Robert Nicoli
    • 1
  • Guilherme Corrêa de Oliveira
    • 2
    • 4
  • Flavio Guimarães da Fonseca
    • 1
  • Edel Figueiredo Barbosa-Stancioli
    • 1
    Email author
  1. 1.Departamento de Microbiologia, Instituto de Ciências BiológicasUniversidade Federal Minas GeraisBelo HorizonteBrazil
  2. 2.Centro de Pesquisa René Rachou – FIOCRUZBelo HorizonteBrazil
  3. 3.Empresa de Pesquisa Agropecuária de Minas Gerais – EPAMIGUberabaBrazil
  4. 4.Instituto Tecnológico ValeBelémBrazil

Personalised recommendations