Semisolid culture medium improves mycelial recovery of Agaricus subrufescens cryopreserved in cereal grains

  • Henrique Susumu Tanaka
  • Miria Benetati Delgado Bertéli
  • Fabio Aparecido Cordeiro
  • Ana Daniela LopesEmail author
  • Juliana Silveira do Valle
  • Giani Andrea Linde
  • Nelson Barros Colauto
Fungal and Bacterial Physiology - Research paper


This study aimed to evaluate the effects of the solid and semisolid culture medium on the mycelial viability of A. subrufescens after 5-year cryopreservation at − 70 °C. Mycelia were grown in three types of whole or ground grains, with or without 5% glycerol addition in the substrate and/or in a cryotube. After 5 years of cryopreservation at − 70 °C, every treatment was thawed and recovered in malt extract culture medium with 15 (solid culture medium) or 5 g L−1 (semisolid culture medium) of agar. The semisolid recovery culture medium increased the mycelial viability recovery capacity of A. subrufescens cryopreserved for 5 years in grains with glycerol only in the cryotube, and specifically with medium-hard wheat grain without glycerol addition at all. Agar-based substrates such as malt extract agar, agar-ground grain, or the one with glycerol addition to the substrate were not effective to keep the mycelial viability, regardless of the recovery culture medium consistency. Hard and medium-hard endosperm wheat grains or hard endosperm rye grains with addition of glycerol as cryoprotectant only to the cryotube were effective to cryopreserve the fungus for 5 years without cryoprotectant addition in the substrate.


Agaricus blazei Semisolid culture medium Water activity Mycelial cryopreservation Thawing 


Funding information

The authors thank Universidade Paranaense, Programa de Pós-graduação em Biotecnologia Aplicada à Agricultura, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—finance code 001, Fundação Araucária, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support and fellowship.


  1. 1.
    Mourão F, Linde GA, Messa V, Cunha Junior PL, Silva AV, Eira AF, Colauto NB (2009) Antineoplasic activity of Agaricus brasiliensis basidiocarps on different maturation phases. Braz J Microbiol 40:901–905CrossRefGoogle Scholar
  2. 2.
    Bertéli MBD, Umeo SH, Bertéli A, Valle JS, Linde GA, Colauto N (2014) Mycelial antineoplastic activity of Agaricus blazei. World J Microbiol Biotechnol 30:2307–2313CrossRefGoogle Scholar
  3. 3.
    Bertéli MBD, Lopes AD, Colla IM, Linde GA, Colauto NB (2016) Agaricus subrufescens: substratum nitrogen concentration and mycelial extraction method on antitumor activity. An Acad Bras Cienc 88:2239–2246CrossRefGoogle Scholar
  4. 4.
    Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (review). Int J Med Mushrooms 1:31–62CrossRefGoogle Scholar
  5. 5.
    Souza-Paccola EA, Bonfeti CA, Fávaro LCL, Fonseca ICB, Paccola-Meirelles LD (2004) Antimutagenic action of Lentinula edodes and Agaricus blazei on Aspergillus nidulas conidia. Braz J Microbiol 35:311–315CrossRefGoogle Scholar
  6. 6.
    Mourão F, Umeo SH, Takemura OS, Linde GA, Colauto NB (2011a) Antioxidant activity of Agaricus brasiliensis basidiocarps on different maturations phases. Braz J Microbiol 42:197–202CrossRefGoogle Scholar
  7. 7.
    Umeo SH, Souza GPN, Rapachi PM, Garcia DM, Paccola-Meirelles LD, Valle JS, Colauto NB, Linde GA (2015) Screening of basidiomycetes in submerged cultivation based on antioxidant activity. Genet Mol Res 14:9907–9914CrossRefGoogle Scholar
  8. 8.
    Mourão F, Umeo SH, Bertéli MBD, Lourenço EL, Gasparotto Junior A, Takemura OS, Linde GA, Colauto NB (2011b) Anti-inflammatory activity of Agaricus blazei in different basidiocarp maturation. Food Agric Immunol 22:325–333CrossRefGoogle Scholar
  9. 9.
    D’Agostini EC, Mantovani TRD, Valle JS, Paccola-Meirelles LD, Colauto NB, Linde GA (2011) Low carbon/nitrogen ratio increases laccase production from basidiomycetes in solid substrate cultivation. Sci Agric 68:295–300CrossRefGoogle Scholar
  10. 10.
    Valle JS, Vandenberghe LPS, Oliveira ACC, Tavares MF, Linde GA, Colauto NB, Soccol CR (2015) Effect of different compounds on the induction of laccase production by Agaricus blazei. Genet Mol Res 14:15882–15891CrossRefGoogle Scholar
  11. 11.
    Marcante RC, Meniquetti A, Pascotto CR, Gazim ZC, Magalhães HM, Colauto NB, Linde GA (2014) Bioacumulação de zinco em micélio de Agaricus subrufescens. Arq Ciênc Vet Zool UNIPAR 17:247–250Google Scholar
  12. 12.
    Colauto NB, Eira AF, Linde GA (2011) Cryopreservation at -80°C of Agaricus blazei on rice grains. World J Microbiol Biotechnol 27:3015–3018CrossRefGoogle Scholar
  13. 13.
    Maia SC, Toledo RCC, Almeida APMM, Silva R, Rinker DL, Dias ES (2012) Low-cost and low maintenance preservation of Agaricus brasiliensis cultures. World J Microbiol Biotechnol 28:2411–2416CrossRefGoogle Scholar
  14. 14.
    Eichlerová I, Homolka L (2014) Preservation of basidiomycetes strains on perlite using different protocols. Mycoscience 55:439–448CrossRefGoogle Scholar
  15. 15.
    Mantovani TDR, Tanaka HS, Umeo AH, Zaghi Junior LL, Valle JS, Paccola-Meirelles LD, Linde GA, Colauto NB (2012) Cryopreservation at -20 and -70 °C of Pleurotus ostreatus on grains. Indian J Microbiol 53:484–488CrossRefGoogle Scholar
  16. 16.
    Tanaka HS, Mantovani TRD, Geromini KVN, Umeo SH, Zaghi-Junior LL, Linde GA, Colauto NB (2011) Viabilidade de Agaricus blazei em diferentes condições de preservação. Arq Ciênc Vet Zool UNIPAR 14:13–17Google Scholar
  17. 17.
    Tanaka HS, Mantovani TRD, Santos MP, Linde GA, Colauto NB (2013) Cereal grains and glycerol in Agaricus blazei cryopreservation. Biosci J 29:627–633Google Scholar
  18. 18.
    Colauto NB, Cordeiro FA, Geromini KVN, Lima TG, Lopes AD, Nunes RAR, Roratto FB, Tanaka HS, Zaghi Junior LL, Linde GA (2012) Viability of Agaricus blazei after long-term cryopreservation. Ann Microbiol 62:871–876CrossRefGoogle Scholar
  19. 19.
    Zaghi Junior LL, Lopes AD, Cordeiro FA, Colla IM, Bertéli MB, Valle JS, Linde GA, Colauto NB (2018) Cryopreservation at −75°C of Agaricus subrufescens on wheat grains with sucrose. Braz J Microbiol 49:370–377CrossRefGoogle Scholar
  20. 20.
    Homolka L, Lisá L, Nerud F (2003) Viability of basidiomycete strains after cryopreservation: comparison of two different freezing protocols. Folia Microbiol 48:219–226CrossRefGoogle Scholar
  21. 21.
    Homolka L, Lisá L, Nerud F (2006) Basidiomycete cryopreservation on perlite: evaluation of a new method. Cryobiology. 52:446–453CrossRefGoogle Scholar
  22. 22.
    Linde GA, Luciani A, Lopes AD, Valle JS, Colauto N (2018) Long-term cryopreservation of basidiomycetes. Braz J Microbiol 49:220–231CrossRefGoogle Scholar
  23. 23.
    Gomes E, Silva R, Pereira JC, Ladino-Orjuela G (2018) Fungal growth on solid substrates: a physiological overview In: Pandey A, Negi S, Soccol CR (eds) Current Developments in Biotechnology and Bioengineering, 1st edn. Elsevier, Amsterdam, pp 31–56Google Scholar
  24. 24.
    Mantovani TRD, Macarini LK, Glowacki SAF, Haurani MN, Takakua FC, D’Agostini EC, Tanaka HS, Valle JS, Pacccola-Meirelles LD, Linde GA, Colauto NB (2008) Cryopreservation of genus Pleurotus at -20 °C and -70 °C. Arq Ciênc Vet Zool. UNIPAR 11:107–112Google Scholar
  25. 25.
    Mata G, Savoie JM (2013) Preservation of Agaricus subrufescens strains at low temperature by using cultures on sorghum. Rev Iberoam Micol 30:96–102CrossRefGoogle Scholar
  26. 26.
    Mata G, Pérez-Merlo R (2003) Spawn viability in edible mushrooms after freezing in liquid nitrogen without a cryoprotectant. Cryobiology. 47:14–20CrossRefGoogle Scholar
  27. 27.
    Hubálek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology. 46:205–229CrossRefGoogle Scholar
  28. 28.
    Dumont F, Marechal PA, Gervais P (2004) Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates. Appl Environ Microbiol 70:268–272CrossRefGoogle Scholar
  29. 29.
    Kitamoto Y, Suzuki A, Shimada S, Yamanaka K (2002) A new method for the preservation of fungus stock culture by deep-freezing. Mycoscience. 43:143–149CrossRefGoogle Scholar
  30. 30.
    Palacio A, Gutiérrez Y, Rojas D, Atehortúa L, Zapata P (2014) Viability of basidiomycete fungal strains under different conservation methods: cryopreservation vs. freeze-drying processes. Actual Biol 36:13–21Google Scholar
  31. 31.
    Scott WJ (1957) Water relations of food spoilage microorganisms. Adv Food Res 7:83–127CrossRefGoogle Scholar
  32. 32.
    Huang Y, Chapman B, Wilson M, Hocking AD (2009) Effect of agar concentration on the matric potential of glycerol agar media and the germination and growth of xerophilic and non-xerophilic fungi. Int J Food Microbiol 133:179–185CrossRefGoogle Scholar
  33. 33.
    Prosser JI, Tough AJ (1991) Growth mechanisms and growth kinetics of filamentous microorganisms. Crit Rev Biotechnol 10:253–274CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Henrique Susumu Tanaka
    • 1
  • Miria Benetati Delgado Bertéli
    • 1
  • Fabio Aparecido Cordeiro
    • 1
  • Ana Daniela Lopes
    • 1
    Email author
  • Juliana Silveira do Valle
    • 1
  • Giani Andrea Linde
    • 1
  • Nelson Barros Colauto
    • 1
  1. 1.Graduate Program of Biotechnology Applied to Agriculture, Molecular Biology LaboratoryParanaense UniversityUmuaramaBrazil

Personalised recommendations