Advertisement

Interaction between the production of ethanol and glycerol in fed-batch bioreactors

  • Márcia Justino Rossini Mutton
  • Fernanda C. S. Ferrari
  • Lidyane Aline de FreitaEmail author
  • Cristhyane Millena de Freita
  • Maria da Graça S. Andrietta
  • Silvio Roberto Andrietta
Biotechnology and Industrial Microbiology - Research Paper
  • 4 Downloads

Abstract

During alcoholic fermentation, most of the substrates supplied to the yeasts are converted into ethanol and carbon dioxide generating energy for cell maintenance. However, some of these substrates end up being diverted to other metabolic pathways generating by-products reducing the yield in ethanol production. Glycerol is the most important by-product quantitatively, and its production during fermentation is associated to the production of ethanol. The present study was carried out at a full scale in an industrial fermentation plant applied to sugar cane industry with bioreactors operated in fed-batch mode. Varying levels of the operating factors feeding time, temperature, and concentration of yeast were used in order to verify the interaction between ethanol and glycerol in the fermentative kinetics and how these factors can be optimized to increase ethanol production with reduced carbon losses during the formation of other products. The results obtained indicated that glycerol production is linearly associated with ethanol production and that this correlation is influenced by the process conditions. Feeding time had a significant effect and was inversely proportional to the glycerol/ethanol production ratio. Therefore, it can be said that a moderate feeding rate can reduce the production of glycerol in relation to the ethanol produced reducing losses and increasing the fermentation yield.

Keywords

Alcoholic fermentation yield Industrial scale Correlation coefficient of ethanol and glycerol Yeast 

Notes

Acknowledgements

The authors are grateful to the Catanduva industrial plant staff for carrying out the assays and analyses at their plant. To the Graduate Program in Agricultural Microbiology of FCAV/UNESP. To CAPES for the scholarship granted.

Funding information

This research received a financial support from the Graduate Program in Agricultural Microbiology - FCAV/UNESP.

References

  1. 1.
    Rodrigues RG (2017) Diversidade microbiana cultivável em processo industrial de produção de etanol. Brasília, Brasil. (M.Sc. Dissertation. Universidade de Brasília)Google Scholar
  2. 2.
    Gnansounou E, Dauriat A (2005) Ethanol fuel from biomass: a review. J Sci Ind Res 64:809–822Google Scholar
  3. 3.
    Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157CrossRefGoogle Scholar
  4. 4.
    Suhaimi SN, Phang LY, Maeda T, Abd-Aziz S, Wakisaka M, Shirai Y, Hassan MA (2012) Bioconversion of glycerol for bioethanol production using isolated Escherichia coli SS1. Braz J Microbiol 43(2):506–516CrossRefGoogle Scholar
  5. 5.
    Conab – Companhia Nacional de Abastecimento (2013) Quarto levantamento cana-de-açúcar – Abril/2013. Disponível em: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/13_04_09_10_30_34_boletim_cana_portugues_abril_2013_4o_lev.pdf. Acessado em: 04 de Jun de 2013
  6. 6.
    McNeil B, Harvey LM (1990) Fermentation – a practical approach, 1st edn. IRL PRESS at Oxford University PressGoogle Scholar
  7. 7.
    Lessmann WF (1993) Estudo do processo descontínuo alimentado para a produção de amiologlicosidase por Aspergillusawarnori NRRL3112 para concentrações de polissacarídeo de 40 e 80 g/L. São Paulo, Brasil. (M. Sc. Dissertation. Escola Politécnica. USP)Google Scholar
  8. 8.
    Costa AC, Lima EL, Alves TLM (1996) Otimização de processos fermentativos em batelada alimentada através da Teoria de Controle Singular. XI Simpósio Nacional de Fermentações, vol1Google Scholar
  9. 9.
    Keller R, Dunn J (1978) Computer of biomass production rate of cyclic fed batch continuous culture. J Appl Chem Biotechnol 28:784–790Google Scholar
  10. 10.
    Oura E (1974) Effect of aeration intensity on the biochemical composition of baker’s yeast. I factors affecting the type of metabolism. Biotechnol Bioeng 26(6):1197–1202CrossRefGoogle Scholar
  11. 11.
    Lima UA, Basso LC, Amorim HV (2001) Biotecnologia Industrial: Processos Fermentativos e Enzimáticos. Edgard Blücher, São PauloGoogle Scholar
  12. 12.
    Lima LR, Marcondes AA (2002) Álcool Carburante: Uma Estratégia Brasileira. UFPR, CuritibaGoogle Scholar
  13. 13.
    Barre P, Blondin B, Dequin S, Feuillat M, Sablayrolles JM, Basso LC (2004) Fisiologia e ecologia microbiana. I Workshop Tecnológico sobre Produção de Etanol, ESALQ/USP, PiracicabaGoogle Scholar
  14. 14.
    Brumm PJ, Hebeda RE (1988) Glycerol production in industrial alcohol fermentations. Biotechnol Lett 10(9):677–682CrossRefGoogle Scholar
  15. 15.
    Oura E (1977) Reaction products of yeast fermentations. Process Biochem 12(19–21):35Google Scholar
  16. 16.
    Panchal CJ, Stewart GG (1980) The effect of osmotic pressure on the production and excretion of ethanol and glycerol by a brewing yeast strain. J Inst Brew 86:207–210CrossRefGoogle Scholar
  17. 17.
    Biocontal (2013) Rendimento fermentativo por subproduto e suas distorções. Disponível em: http://www.biocontal.com.br/index_post.php?page=noticias/rendimentos_fermentativo.html. Acessado em 21 de jan de 2018
  18. 18.
    Amaral FS (2009) Influência conjunta do pH, temperatura e concentração de sulfito na fermentação alcoólica de mostos de sacarose. Uberlândia, Brasil. (M.Sc. Dissertation. Faculdade de Engenharia Química. UFU)Google Scholar
  19. 19.
    Basso LC (2004) Fisiologia e ecologia da fermentação alcoólica. I Workshop Tecnológico sobre Produção de Etanol, ESALQ/USP, PiracicabaGoogle Scholar
  20. 20.
    Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae Google Scholar
  21. 21.
    Neish AC, Blackwood AC (1950) Dissimilation of glucose by yeast at poised hydrogen ion concentrations. Can J Technol 29:123–129Google Scholar
  22. 22.
    Nordstrom K (1962) Formation of ethyl acetate in fermentation with brewer’s. III. Participation of coenzyme-A. J Inst Brew 68:398–407CrossRefGoogle Scholar
  23. 23.
    Rankine BC, Bridson DA (1971) Glycerol in Australian wines and factors influencing its formation. Am J Enol Vitic 22:6–12Google Scholar
  24. 24.
    CTC – Centro de Tecnologia Canavieira (2011) Manual de Métodos de Análises para Açúcar e Álcool. Piracicaba – Álcool - CTC-LA-MT2–008 – versão 03. Disponível em CD ROMGoogle Scholar
  25. 25.
    Fermentec (2012) Métodos Analíticos para o Controle da Produção de Açúcar e Álcool. Métodos FTCQ 08/007 e FTCQ 08/001. Piracicaba, BrasilGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Márcia Justino Rossini Mutton
    • 1
  • Fernanda C. S. Ferrari
    • 1
  • Lidyane Aline de Freita
    • 1
    • 2
    Email author
  • Cristhyane Millena de Freita
    • 1
  • Maria da Graça S. Andrietta
    • 3
  • Silvio Roberto Andrietta
    • 4
  1. 1.Departamento de TecnologiaUniversidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/nJaboticabalBrazil
  2. 2.Pós-graduação em Microbiologia AgropecuáriaFCAV/UNESP JaboticabalBrazil
  3. 3.Laboratório de Biotecnologia de ProcessosUniversidade Estadual de Campinas/SP – CPQBACampinasBrazil
  4. 4.Biocontal – Tecnologia em BioprocessosCampinasBrazil

Personalised recommendations