Advertisement

Soybean inoculants in Brazil: an overview of quality control

  • Gabriela Kalinowski de Souza
  • Jamilla Sampaio
  • Letícia Longoni
  • Silviane Ferreira
  • Samuel Alvarenga
  • Anelise BeneduziEmail author
Environmental Microbiology - Research Paper

Abstract

The bacterial strains SEMIA 587 and 5019 (Bradyrhizobium elkanii), 5079 (Bradyrhizobium japonicum), and 5080 (Bradyrhizobium diazoefficiens) are recommended for soybean inoculants in Brazil. In several countries, the current regulations are insufficient to induce companies for improving the quality of their products, leading to low performance and subsequent abandonment of inoculant use. From 2010 to 2014, 1086 samples coming mainly from Argentina and the southern region of Brazil were analyzed for viable cells counting, strains identification, and purity analysis according to the SDA/MAPA no. 30/2010 Normative Instruction. Most products were imported and formulated in liquid carriers with 5.0 × 109 colony-forming units (CFU)/mL. The strains most frequently used were SEMIA 5079/5080. Only 2.21% of samples had contaminants. The guaranteed concentration of viable cells in inoculants mostly ranged from 4.1 × 109 to 5.0 × 109 CFU/mL or CFU/g. The most frequently found concentration was above 1.1 × 1010 CFU/mL or CFU/g, which was higher than the product guarantee. The inoculants used for soybean crop in Brazil have excellent quality, leading the country to the leadership in taking advantage of the biological nitrogen fixation benefits for a productive and sustainable agriculture.

Keywords

Biological nitrogen fixation SEMIA 587 SEMIA 5019 SEMIA 5079 SEMIA 5080 

Notes

Acknowledgements

The authors are grateful to Eliane Bangel for her huge efforts in the diffusion of inoculation technology.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801CrossRefGoogle Scholar
  2. 2.
    Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631CrossRefGoogle Scholar
  3. 3.
    Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14CrossRefGoogle Scholar
  4. 4.
    Giongo A, Ambrosini A, Vargas LK, Freire JRJ, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity of bradyrhizobia strains nodulating soybean [Glycine max (L.) Merrill] isolated from South Brazilian fields. Appl Soil Ecol 38:261–269CrossRefGoogle Scholar
  5. 5.
    Hungria M, Campo RJ, Mendes IC (2001) Fixação biológica do nitrogênio na cultura da soja. Brasília, Embrapa SojaGoogle Scholar
  6. 6.
    Delamuta JRM, Ribeiro RA, Orrillo EO, Melo IS, Romero EM, Hungria M (2013) Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group la strains as Bradyrhizobium diazoefficiens. Int J Syst Evol Microbiol 63:3342–3351CrossRefGoogle Scholar
  7. 7.
    Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC, Arihara J (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and of N fertilizer to grain yield. Can J Plant Sci 86:927–939CrossRefGoogle Scholar
  8. 8.
    De Paiva Barbosa L, Costa PF, Ribeiro PRA, Rufini M, Guimarães AA, De Souza Moreira FM (2017) Symbiotic efficiency and genotypic characterization of variants of Bradyrhizobium spp. in commercial inoculants for soybeans. Rev Bras Cienc Solo 41:e0160572Google Scholar
  9. 9.
    SDA/MAPA (2004) Decree n° 4.954/2004. http://www.planalto.gov.br/ccivil_03/_ato2004–2006/2004/decreto/d4954.htm. Accessed 15 February 2018
  10. 10.
    Hungria M, Araujo RS, Júnior S, Barbosa E, Zilli JE (2017) Inoculum rate effects on the soybean symbiosis in new or old fields under tropical conditions. Agron J 109:1106–1112CrossRefGoogle Scholar
  11. 11.
    Campos BC, Hungria M, Tedesco V (2001) Eficiência da fixação biológica de N2 por estirpes de Bradyrhizobium na soja em plantio direto. Rev Bras Ciênc Solo 25:583–592CrossRefGoogle Scholar
  12. 12.
    Ribeiro ABM, Bruzi AT, Zuffo AM, Zambiazzi EV, Soares IO, Vilela NJD, Pereira JLAR, Moreira SG (2017) Productive performance of soybean cultivars grown in different plant densities. Cienc Rural 47:e20160928Google Scholar
  13. 13.
  14. 14.
    Herrmann L, Atieno M, Brau L, Lesueur D (2015) Microbial quality of commercial inoculants to increase BNF and nutrient use efficiency. In: Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, pp 1031–1040CrossRefGoogle Scholar
  15. 15.
    Benintende S (2010) Quality of commercial inoculants for soybean crop in Argentina: concentration of viable rhizobia and presence of contaminants. Rev Argent Microbiol 42:129–132PubMedGoogle Scholar
  16. 16.
    Freire JRJ, Vernetti FJ (1997) A pesquisa com soja, a seleção de rizóbio e a produção de inoculantes no Brasil. Pesq Agrop Gaúcha 5:117–121Google Scholar
  17. 17.
    Gemell LG, Hartley EJ, Herridge DF (2005) Point-of-sale evaluation of preinoculated and custom-inoculated pasture legume seed. Anim Prod Sci 45:161–169CrossRefGoogle Scholar
  18. 18.
    Husen E, Simanungkalit RDM, Saraswati R (2007) Characterization and quality assessment of Indonesian commercial biofertilizers. Indones J Agric Sci 8:31–38CrossRefGoogle Scholar
  19. 19.
    Herridge DF, Hartley E, Gemell LG (2014) Rhizobial counts in peat inoculants vary among legume inoculant groups at manufacture and with storage: implications for quality standards. Plant Soil 380:327–336CrossRefGoogle Scholar
  20. 20.
    Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30CrossRefGoogle Scholar
  21. 21.
    Lupwayi NZ, Olsen PE, Sande ES, Keyser HH, Collins MM, Singleton PW, Rice WA (2000) Inoculant quality and its evaluation. Field Crops Res 65:259–270CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Campo RJ, Hungria M (2007) Avaliação de estirpes ou combinações de estirpes de Bradyrhizobium japonicum e B. elkanü para a soja. In: Campo RJ, Hungria M (eds) Anais da 13 Reunião da Rede de Laboratórios para Recomendação, Padronização e Difusão de Tecnologia de Inoculantes Microbianos de Interesse Agrícola (RELARE). Embrapa Soja, Londrina, p 32Google Scholar
  24. 24.
    Freire JRJ, Kolling J, Vidor C (1983) Sobrevivência e competição por sítios de nodulação de estirpes de Rhizobium japonicum para soja. Rev Bras Cienc Solo 7:47–53Google Scholar
  25. 25.
    Batista JSS, Hungria M, Barcellos FG, Ferreira MC, Mendes IC (2007) Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic microsymbiont and the soybean host in a Cerrados soil. Microbiol Ecol 53:270–284CrossRefGoogle Scholar
  26. 26.
    Bizarro MJ, Giongo A, Vargas LK, Roesch LFW, Gano KA, Sá ELS, Passaglia LMP, Selbach PA (2011) Genetic variability of soybean bradyrhizobia populations under different soil managements. Biol Fertil Soils 47:357–362CrossRefGoogle Scholar
  27. 27.
    Siqueira AF, Ormeño-Orrillo E, Souza RC, Rodrigues EP, Almeida LGP, Barcellos FG, Batista JSS, Nakatani AS, Martínez-Romero E, Vasconcelos ATR, Hungria M (2014) Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics 15:420CrossRefGoogle Scholar
  28. 28.
    Peres JAR, Mendes LC, Suhet A, Vargas MAT (1993) Eficiência e competitividade de estirpes de rizóbio para soja em solos de cerrado. Rev Bras Cienc Solo 17:357–363Google Scholar
  29. 29.
    Mendes IC, Vargas MAT, Peres JRR, Suhet AR, Reis-Junior FB (2007a) SEMIA 5080 (CPAC-7) e SEMIA 5079 (CPAC-15): Retrospectiva dos Experimentos conduzidos na Embrapa Cerrados. Parte 1: Olhando para o passado e para o futuro. In: Campo RJ, Hungria M (eds) Anais da 13 Reunião da Rede de Laboratórios para Recomendação, Padronização e Difusão de Tecnologia de Inoculantes Microbianos de Interesse Agrícola (RELARE). Embrapa Soja, Londrina, p 25Google Scholar
  30. 30.
    Mendes IC, Vargas MAT, Peres JRR, Suhet AR, Reis-Junior FB (2007b) SEMIA 5080 (CPAC-7) e SEMIA5079 (CPAC-15): Retrospectiva dos experimentos conduzidos na Embrapa Cerrados. Parte II: Fixar N eficientemente é preciso, mas, competir pelos sítios de infecção, também é. In: Campo RJ, Hungria M (eds) Anais da 13 Reunião da Rede de Laboratórios para Recomendação, Padronização e Difusão de Tecnologia de Inoculantes Microbianos de Interesse Agrícola (RELARE). Embrapa Soja, Londrina, p 26Google Scholar
  31. 31.
    Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873CrossRefGoogle Scholar
  32. 32.
    Penna C, Massa R, Olivieri F, Gutkind G, Cassán F (2011) A simple method to evaluate the number of bradyrhizobia on soybean seeds and its implication on inoculant quality control. AMB Express 1:21CrossRefGoogle Scholar
  33. 33.
    Hungria M, Campo RJ, Mendes IC (2007) A importância do processo de fixação biológica do nitrogênio para a cultura da soja: componente essencial para a competitividade do produto brasileiro. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/468512. Accessed 15 February 2018

Copyright information

© Sociedade Brasileira de Microbiologia 2018

Authors and Affiliations

  • Gabriela Kalinowski de Souza
    • 1
  • Jamilla Sampaio
    • 2
  • Letícia Longoni
    • 2
  • Silviane Ferreira
    • 2
  • Samuel Alvarenga
    • 2
  • Anelise Beneduzi
    • 1
    • 2
    Email author
  1. 1.Universidade La SalleCanoasBrazil
  2. 2.Departamento de Diagnóstico e Pesquisa Agropecuária (ex-FEPAGRO) da Secretaria da AgriculturaPecuária e Irrigação (SEAPI) do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations